2022年江苏省盐城初级中学数学八年级上册期末调研模拟试题含解析_第1页
2022年江苏省盐城初级中学数学八年级上册期末调研模拟试题含解析_第2页
2022年江苏省盐城初级中学数学八年级上册期末调研模拟试题含解析_第3页
2022年江苏省盐城初级中学数学八年级上册期末调研模拟试题含解析_第4页
2022年江苏省盐城初级中学数学八年级上册期末调研模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.某鞋厂为了了解初中生穿鞋的尺码情况,对某中学八年级(2)班的20名男生进行了调查,统计结果如下表:则这20个数据的中位数和众数分别为()尺码373839404142人数344711A.4和7 B.40和7 C.39和40 D.39.1和392.如图,为的角平分线,,过作于,交的延长线于,则下列结论:①;②;③;④其中正确结论的序号有()A.①②③④ B.②③④ C.①②③ D.①②④3.如图,在△ABC中,∠B=30°,∠C=45°,AD平分∠BAC交BC于点D,DE⊥AB,垂足为E.若DE=1,则BC的长为()A.2+ B. C. D.34.如图,阴影部分是一个正方形,此正方形的面积是()A.16 B.8 C.4 D.25.下列四个图形中,与图1中的图形全等的是()A. B. C. D.6.如图,等边△ABC中,BD⊥AC于D,AD=3.5cm,点P、Q分别为AB、AD上的两个定点且BP=AQ=2cm,在BD上有一动点E使PE+QE最短,则PE+QE的最小值为()A.3cm B.4cm C.5cm D.6cm7.工人师傅常用直角尺平分一个角,做法如下:如图所示,在∠AOB的边OA,OB上分别取OM=ON,移动直角尺,使直角尺两边相同的刻度分别与M,N重合(即CM=CN).此时过直角尺顶点C的射线OC即是∠AOB的平分线.这种做法的道理是()A.HL B.SAS C.SSS D.ASA8.估计+1的值应在()A.3和4之间 B.4和5之间 C.5和6之间 D.6和7之间9.如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有()A.1个 B.2个 C.3个 D.4个10.折叠长方形的一边,使点落在边的点处,若,求的长为()A. B. C. D.二、填空题(每小题3分,共24分)11.已知点P(a,b)在一次函数y=2x+1的图象上,则2a﹣b=_____.12.平行四边形ABCD中,,对角线,另一条对角线BD的取值范围是_____.13.一个n边形的内角和为1080°,则n=________.14.正比例函数的图像经过第______________________象限.15.如图,∠AOB=30°,C是BO上的一点,CO=4,点P为AO上的一动点,点D为CO上的一动点,则PC+PD的最小值为_____,当PC+PD的值取最小值时,则△OPC的面积为_____.16.已知可以被10到20之间某两个整数整除,则这两个数是___________.17.已知,,,比较,,的大小关系,用“”号连接为______.18.直角三角形的直角边长分别为,,斜边长为,则__________.三、解答题(共66分)19.(10分)如图,直线与直线交于点A,点A的横坐标为,且直线与x轴交于点B,与y轴交于点D,直线与y轴交于点C.(1)求点A的坐标及直线的函数表达式;(2)连接,求的面积.20.(6分)某同学化简a(a+2b)﹣(a+b)(a﹣b)出现了错误,解答过程如下:原式=a2+2ab﹣(a2﹣b2)(第一步)=a2+2ab﹣a2﹣b2(第二步)=2ab﹣b2(第三步)(1)该同学解答过程从第几步开始出错,错误原因是什么;(2)写出此题正确的解答过程.21.(6分)亚洲文明对话大会召开期间,大批的大学生志愿者参与服务工作.某大学计划组织本校全体志愿者统一乘车去会场,若单独调配36座新能源客车若干辆,则有2人没有座位;若只调配22座新能源客车,则用车数量将增加4辆,并空出2个座位.(1)计划调配36座新能源客车多少辆?该大学共有多少名志愿者?(2)若同时调配36座和22座两种车型,既保证每人有座,又保证每车不空座,则两种车型各需多少辆?22.(8分)先化简再求值:,其中x=23.(8分)(1)分解因式:;(2)计算:.24.(8分)已知xa=3,xb=6,xc=12,xd=1.(1)求证:①a+c=2b;②a+b=d;(2)求x2a﹣b+c的值.25.(10分)如图,在平面直角坐标系中,点,;(1)作关于轴的对称图形(点、、的对应点分别是、、)(2)将向右平移2个单位长度,得到(点、、的对应点分别是、、)(3)请直接写出点的坐标.26.(10分)某校开学初在家乐福超市购进A、B两种品牌的足球,购买A品牌足球花费了2500元,购买B品牌足球花费了2000元,且购买A品牌足球数量是购买B品牌足球数量的2倍.已知购买一个B品牌足球比购买一个A品牌足球多花30元.(1)购买一个A品牌、一个B品牌足球各需多少元?(2)该校响应“足球进校园”的号召,决定再次购进A、B两种品牌的足球共50个,恰逢家乐福超市对这两种品牌足球的售价进行调整,A品牌足球售价比第一次购买时提高了8%,B品牌足球按第一次购买时售价的9折出售,如果该校此次购买的总费用不超过3260元,那么,最多可以购买多少个B品牌足球?

参考答案一、选择题(每小题3分,共30分)1、C【分析】根据众数与中位数的定义求解分析.40出现的次数最多为众数,第10、11个数的平均数为中位数.【详解】解:观察图表可知:有7人的鞋号为40,人数最多,即众数是40;中位数是第10、11人的平均数,即39;故选:C.【点睛】本题考查众数与中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数);众数是数据中出现最多的一个数.2、A【分析】根据角平分线上的点到角的两边距离相等可得,再利用“”证明和全等,根据全等三角形对应边相等可得,利用“”证明和全等,根据全等三角形对应边相等可得,然后求出;根据全等三角形对应角相等可得,利用“8字型”证明;,再根据全等三角形对应角相等可得,然后求出.【详解】解:平分,,,,在和中,,,故①正确;,在和中,,,,,故②正确;,,设交于O,,,故③正确;,,,,,,故④正确;综上所述,正确的结论有①②③④共4个.故选:.【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,全等三角形的判定与性质,熟记性质并准确识图判断出全等的三角形是解题的关键,难点在于需要二次证明三角形全等.3、A【分析】如图,过点D作DF⊥AC于F,由角平分线的性质可得DF=DE=1,在Rt△BED中,根据30度角所对直角边等于斜边一半可得BD长,在Rt△CDF中,由∠C=45°,可知△CDF为等腰直角三角形,利用勾股定理可求得CD的长,继而由BC=BD+CD即可求得答案.【详解】如图,过点D作DF⊥AC于F,∵AD为∠BAC的平分线,且DE⊥AB于E,DF⊥AC于F,∴DF=DE=1,在Rt△BED中,∠B=30°,∴BD=2DE=2,在Rt△CDF中,∠C=45°,∴△CDF为等腰直角三角形,∴CF=DF=1,∴CD==,∴BC=BD+CD=,故选A.【点睛】本题考查了角平分线的性质,含30度角的直角三角形的性质,勾股定理等知识,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.4、B【分析】先证明图中的三角形为等腰直角三角形,再利用勾股定理求出正方形边长的平方即可得出结果.【详解】解:如图,

∵阴影部分是正方形,所以∠ABC=90°,∴∠C=∠BAC=45°,∴AB=BC,又AC=4,∴AB2+BC2=AC2=16

∴AB2=AC2=1,

∴正方形的面积=AB2=1.

故选:B.【点睛】本题考查勾股定理,等腰三角形的判定,正方形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.5、C【分析】直接利用全等形的定义解答即可.【详解】解:只有C选项与图1形状、大小都相同.故答案为C.【点睛】本题主要考查了全等形的定义,形状、大小都相同图形为全等形.6、C【分析】作点Q关于BD的对称点Q′,连接PQ′交BD于E,连接QE,此时PE+EQ的值最小.最小值PE+PQ=PE+EQ′=PQ′,【详解】解:如图,∵△ABC是等边三角形,

∴BA=BC,

∵BD⊥AC,

∴AD=DC=3.5cm,

作点Q关于BD的对称点Q′,连接PQ′交BD于E,连接QE,此时PE+EQ的值最小.最小值为PE+PQ=PE+EQ′=PQ′,

∵AQ=2cm,AD=DC=3.5cm,

∴QD=DQ′=1.5(cm),

∴CQ′=BP=2(cm),

∴AP=AQ′=5(cm),

∵∠A=60°,

∴△APQ′是等边三角形,

∴PQ′=PA=5(cm),

∴PE+QE的最小值为5cm.

故选:C.【点睛】本题考查了等边三角形的性质和判定,轴对称最短问题等知识,解题的关键是学会利用轴对称解决最短问题.7、C【分析】根据题中的已知条件确定有三组边对应相等,由此证明△OMC≌△ONC(SSS),即可得到结论.【详解】在△OMC和△ONC中,,∴△OMC≌△ONC(SSS),∴∠MOC=∠NOC,∴射线OC即是∠AOB的平分线,故选:C.【点睛】此题考查了全等三角形的判定及性质,比较简单,注意利用了三边对应相等,熟记三角形全等的判定定理并解决问题是解题的关键.8、B【解析】解:∵,∴.故选.点睛:此题主要考查了估算无理数的大小,正确得出的取值范围是解题关键.9、C【详解】要使△ABP与△ABC全等,必须使点P到AB的距离等于点C到AB的距离,即3个单位长度,所以点P的位置可以是P1,P2,P4三个,故选C.10、A【分析】在Rt△ABF中,根据勾股定理求出BF的值,进而得出FC=BC-BF=10-6=4cm.在Rt△EFC中,根据勾股定理即可求出EC的长.【详解】设EC的长为xcm,∴DE=(8-x)cm.∵△ADE折叠后的图形是△AFE,∴AD=AF,∠D=∠AFE,DE=EF.∵AD=BC=10cm,∴AF=AD=10cm.又∵AB=8cm,在Rt△ABF中,根据勾股定理,得AB2+BF2=AF2,∴82+BF2=102,∴BF=6cm.∴FC=BC-BF=10-6=4cm.在Rt△EFC中,根据勾股定理,得:FC2+EC2=EF2,∴42+x2=(8-x)2,即16+x2=64-16x+x2,化简,得16x=1.∴x=2.故EC的长为2cm.故答案为:A.【点睛】本题考查了图形的翻折的知识,翻折中较复杂的计算,需找到翻折后相应的直角三角形,利用勾股定理求解所需线段.二、填空题(每小题3分,共24分)11、-1【分析】把P点的坐标代入,再求出答案即可.【详解】∵点P(a,b)在一次函数y=2x+1的图象上,∴代入得:b=2a+1,∴2a﹣b=﹣1,故答案为﹣1.【点睛】本题考查了一次函数图象上点的坐标特征,能得出b=2a+1是解此题的关键.12、【分析】根据四边形和三角形的三边关系性质计算,即可得到答案.【详解】如图,平行四边形ABCD对角线AC和BD交于点O∵平行四边形ABCD,∴中或∴或∵不成立,故舍去∴∴∵∴.【点睛】本题考查了平行四边形、三角形的性质;解题的关键是熟练掌握平行四边形对角线、三角形三边关系的性质,从而完成求解.13、1【分析】直接根据内角和公式计算即可求解.【详解】(n﹣2)•110°=1010°,解得n=1.故答案为1.【点睛】主要考查了多边形的内角和公式.多边形内角和公式:.14、二、四【分析】根据正比例函数的图象与性质解答即可.【详解】解:∵﹣5<0,∴正比例函数的图像经过第二、四象限.故答案为:二、四.【点睛】本题考查了正比例函数的图象与性质,属于应知应会题型,熟练掌握基本知识是解题的关键.15、2【分析】如图,作OB关于OA的对称直线OB′,在OB′设取一点D′,使得OD′=OD,则PD=PD′,作CH⊥OB′于H,交OA于P′.把问题转化为垂线段最短解决.【详解】解:如图,作OB关于OA的对称直线OB′,在OB′设取一点D′,使得OD′=OD,则PD=PD′,作CH⊥OB′于H,交OA于P′.∵PD+PC=PC+PD′≤CH,∴当C,P,D′共线且与CH重合时,PC+PD的值最小,在Rt△OCH中,∵∠CHO=90°,∠COH=90,OC=4,∴∠OCH=30°,∴OH=OC=2,CH=OH=2,HP′=OH•tan30°=,∴PC+PD的最小值为2,此时S△OP′C=S∠OCH﹣S△OHP′=×2×2﹣×2×=,故答案为2,.【点睛】本题考查轴对称,三角形的面积,垂线段最短等知识,解题的关键是学会添加常用辅助线,学会用转化的思想思考问题.16、15和1;【分析】将利用平方差公式分解因式,根据可以被10到20之间的某两个整数整除,即可得到两因式分别为15和1.【详解】因式分解可得:=(216+1)(216-1)=(216+1)(28+1)(28-1)=(216+1)(28+1)(24+1)(24-1),∵24+1=1,24-1=15,∴232-1可以被10和20之间的15,1两个数整除.【点睛】本题考查因式分解的应用,解题的关键是利用平方差公式分解因式.17、【分析】分别根据有理数乘方的意义、负整数指数幂的运算法则和0指数幂的意义计算a、b、c,进一步即可比较大小.【详解】解:,,,∵,∴.故答案为:.【点睛】本题主要考查了负整数指数幂的运算法则和0指数幂的意义,属于基本题型,熟练掌握基本知识是解题的关键.18、1【分析】根据勾股定理计算即可.【详解】根据勾股定理得:斜边的平方=x2=82+152=1.故答案为:1.【点睛】本题考查了勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答本题的关键.三、解答题(共66分)19、(1);(2)1.【解析】(1)将x=-1代入得出纵坐标,从而得到点A的坐标;再用待定系数法求得直线的函数表达式;(2)连接,先根据解析式求得B,C,D的坐标,得出BO,CD的长,然后利用割补法求的面积,.【详解】解:(1)因为点A在直线上,且横坐标为,所以点A的纵坐标为,所以点A的坐标为.因为直线过点A,所以将代入,得,解得,所以直线的函数表达式为.(2)如图,连接BC,由直线,的函数表达式,易得点B的坐标为,点D的坐标为,点C的坐标为,所以.所以.【点睛】本题主要考查了两直线相交问题,要注意利用一次函数的特点,列出方程,求出未知数再求得解析式;求三角形的面积时找出高和底边长,对不规则的三角形面积可以使用割补法等方法.20、(1)从第二步开始出错,错误原因是去括号时没有变号;(1)1ab+b1.【分析】去括号时,括号外面是正号,则去掉括号后,括号里的各项不改变符号,去括号时,括号外面是负号,则去掉括号后,括号里的各项要改变符号;根据上述法则判断哪一步错误,再正确的去掉括号,合并同类项即可.【详解】解:(1)该同学解答过程从第二步开始出错,错误原因是去括号时没有变号;(1)原式=a1+1ab-(a1-b1)=a1+1ab-a1+b1=1ab+b1.故答案为(1)第二步,去括号时没有变号;(1)1ab+b1.【点睛】本题主要考查整式的运算,解题关键要掌握去括号法则;21、(1)计划36座的新能源客车6辆,共有218名志愿者;(2)调配36座新能源客车3辆,22座新能源客车5辆.【分析】(1)设计划调配36座新能源客车辆,该大学共有名志愿者.列方程组,得解方程组可得;(2)设调配36座新能源客车辆,22座新能源客车辆,根据题意,得,求正整数解;【详解】解:(1)设计划调配36座新能源客车辆,该大学共有名志愿者.列方程组,得解得∴计划36座的新能源客车6辆,共有218名志愿者.(2)设调配36座新能源客车辆,22座新能源客车辆,根据题意,得,正整数解为∴调配36座新能源客车3辆,22座新能源客车5辆.【点睛】考核知识点:二元一次方程组的运用.理解题意是关键.22、化简的结果是;.【分析】先计算括号里的减法,将进行因式分解,再将除法运算化为乘法运算,约分得到最简结果,将x的值代入计算即可求出值.【详解】解:===,当x=时,原式==【点睛】此题考查了分式的化简求值,以及解分式方程,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式.23、(1);(2).【分析】(1)提取公因式后,再利用平方差公式分解即可;(2)中括号内先利用单项式乘多项式展开,再合并同类项,然后利用多项式除以单项式法则计算即可.【详解】(1);(2).【点睛】本题考查了因式分解以及整式的混合运算,涉及的知识有:平方差公式,单项式乘多项式法则,多项式除以单项式法则以及合并同类项法则,熟练掌握运算法则是解本题的关键.24、(1)①证明见解析;②证明见解析;(2)1.【分析】(1)根据同底数幂的乘法法则xa+c=x2b.xa•xb=xd.据此即可证得①a+c=2b;②a+b=d;(2)由(1)的结论①+②得2a+b+c=2b+d,移项合并即可得原式=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论