2022-2023学年广东省新朗实验学校九年级数学第一学期期末学业水平测试模拟试题含解析_第1页
2022-2023学年广东省新朗实验学校九年级数学第一学期期末学业水平测试模拟试题含解析_第2页
2022-2023学年广东省新朗实验学校九年级数学第一学期期末学业水平测试模拟试题含解析_第3页
2022-2023学年广东省新朗实验学校九年级数学第一学期期末学业水平测试模拟试题含解析_第4页
2022-2023学年广东省新朗实验学校九年级数学第一学期期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.近视镜镜片的焦距y(单位:米)是镜片的度数x(单位:度)的函数,下表记录了一组数据,在下列函数中,符合表格中所给数据的是:()(单位:度)…100250400500…(单位:米)…1.000.400.250.20…A.y=x B.y= C.y=﹣x+ D.y=2.下列调查中,最适合采用抽样调查方式的是()A.对某飞机上旅客随身携带易燃易爆危险物品情况的调查B.对我国首艘国产“002型”航母各零部件质量情况的调查C.对渝北区某中学初2019级1班数学期末成绩情况的调查D.对全国公民知晓“社会主义核心价值观”内涵情况的调查3.在反比例函数y=的图象上有两点A(x1,y1)、B(x2,y2).若x1<0<x2,y1<y2则k的取值范围是()A.k≥ B.k> C.k<﹣ D.k<4.如图相交于点,下列比例式错误的是()A. B. C. D.5.下列关于x的一元二次方程,有两个不相等的实数根的方程的是()A.x2+1=0 B.x2+2x+1=0 C.x2+2x+3=0 D.x2+2x-3=06.某学校要种植一块面积为100m2的长方形草坪,要求两边长均不小于5m,则草坪的一边长为y(单位:m)随另一边长x(单位:m)的变化而变化的图象可能是()A. B. C. D.7.下列手机软件图标中,既是轴对称图形又是中心对称图形的是()A. B. C. D.8.将抛物线y=2x2向左平移3个单位得到的抛物线的解析式是()A.y=2x2+3 B.y=2x2﹣3C.y=2(x+3)2 D.y=2(x﹣3)29.若是一元二次方程,则的值是()A.-1 B.0 C.1 D.±110.如图,二次函数的图象,则下列结论正确的是()①;②;③;④A.①②③ B.②③④ C.①③④ D.①②③④二、填空题(每小题3分,共24分)11.如图:在△ABC中,AB=13,BC=12,点D,E分别是AB,BC的中点,连接DE,CD,如果DE=2.5,那么△ACD的周长是_____.12.对于为零的两个实数a,b,如果规定:a☆b=ab-b-1,那么x☆(2☆x)=0中x值为____.13.已知点A(a,1)与点B(﹣3,b)关于原点对称,则ab的值为_____.14.一圆锥的母线长为5,底面半径为3,则该圆锥的侧面积为________.15.如图,在中,,点是边的中点,,则的值为___________.16.抛物线y=9x2﹣px+4与x轴只有一个公共点,则p的值是_____.17.在函数中,自变量的取值范围是______.18.若式子在实数范围内有意义,则的取值范围是________.三、解答题(共66分)19.(10分)如图,在中,是高.矩形的顶点、分别在边、上,在边上,,,.求矩形的面积.20.(6分)如图,已知抛物线经过点、,且与轴交于点,抛物线的顶点为,连接,点是线段上的一个动点(不与、)重合.(1)求抛物线的解析式,并写出顶点的坐标;(2)过点作轴于点,求面积的最大值及取得最大值时点的坐标;(3)在(2)的条件下,若点是轴上一动点,点是抛物线上一动点,试判断是否存在这样的点,使得以点,,,为顶点的四边形是平行四边若存在,请直接写出点的坐标:若不存在,请说明理由.21.(6分)如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,P为边BC上一个动点(可以包括点C但不包括点B),以P为圆心PB为半径作⊙P交AB于点D过点D作⊙P的切线交边AC于点E,(1)求证:AE=DE;(2)若PB=2,求AE的长;(3)在P点的运动过程中,请直接写出线段AE长度的取值范围.22.(8分)解方程:4x2﹣2x﹣1=1.23.(8分)如图,抛物线y=ax2+bx+4与x轴的两个交点分别为A(-4,0)、B(2,0),与y轴交于点C,顶点为D.E(1,2)为线段BC的中点,BC的垂直平分线与x轴、y轴分别交于F、G.(1)求抛物线的函数解析式,并写出顶点D的坐标;(2)在直线EF上求一点H,使△CDH的周长最小,并求出最小周长;(3)若点K在x轴上方的抛物线上运动,当K运动到什么位置时,△EFK的面积最大?并求出最大面积.24.(8分)如图,在平面直角坐标系中,Rt△ABC三个顶点都在格点上,点A、B、C的坐标分别为A(﹣4,1),B(﹣1,1),C(﹣1,3),请解答下列问题:(1)画出△ABC关于原点O的中心对称图形△A1B1C1;(2)画出△ABC关于y轴对称图形△A2B2C2,则△A2B2C2与△A1B1C1的位置关系是.25.(10分)如图,在钝角中,点为上的一个动点,连接,将射线绕点逆时针旋转,交线段于点.已知∠C=30°,CA=2cm,BC=7cm,设B,P两点间的距离为xcm,A,D两点间的距离ycm.小牧根据学习函数的经验,对函数随自变量的变化而变化的规律进行了探究.下面是小牧探究的过程,请补充完整:(1)根据图形.可以判断此函数自变量X的取值范围是;(2)通过取点、画图、测量,得到了与的几组值,如下表:0.511.021.913.4734.164.473.973.222.421.66a2.022.50通过测量。可以得到a的值为;(3)在平而直角坐标系xOy中.描出上表中以各对对应值为坐标的点,画出该函数的图象;(4)结合画出的函数图象,解决问题:当AD=3.5cm时,BP的长度约为cm.26.(10分)有一块矩形木板,木工采用如图的方式,在木板上截出两个面积分别为18dm2和32dm2的正方形木板.(1)求剩余木料的面积.(2)如果木工想从剩余的木料中截出长为1.5dm,宽为ldm的长方形木条,最多能截出块这样的木条.

参考答案一、选择题(每小题3分,共30分)1、B【分析】根据表格数据可得近视镜镜片的焦距y(单位:米)与度数x(单位:度)成反比例,依此即可求解;【详解】根据表格数据可得,100×1=250×0.4=400×0.25=500×0.2=100,所以近视镜镜片的焦距y(单位:米)与度数x(单位:度)成反比例,所以y关于x的函数关系式是y=.故选:B.【点睛】此题主要考查了根据实际问题列反比例函数关系式,关键是掌握反比例函数形如(k≠0).2、D【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似,进行判断.【详解】A、对某飞机上旅客随身携带易燃易爆危险物品情况的调查适合采用全面调查方式;B、对我国首艘国产“002型”航母各零部件质量情况的调查适合采用全面调查方式;C、对渝北区某中学初2019级1班数学期末成绩情况的调查适合采用全面调查方式;D、对全国公民知晓“社会主义核心价值观”内涵情况的调查适合采用抽样调查方式;故选:D.【点睛】本题主要考查抽样调查的意义和特点,理解抽样调查的意义是解题的关键.3、D【分析】利用反比例函数的性质得到反比例函数图象分布在第一、三象限,于是得到1﹣3k>0,然后解不等式即可.【详解】∵x1<0<x2,y1<y2,∴反比例函数图象分布在第一、三象限,∴1﹣3k>0,∴k<.故选:D.【点睛】此题考查反比例函数的性质,根据点的横纵坐标的关系即可确定函数图象所在的象限,由此得到k的取值范围.4、D【分析】根据相似三角形的性质和平行线分线段成比例定理,对每个选项进行判断,即可得到答案.【详解】解:∵,∴,,故A、B正确;∴△CDG∽△FEG,∴,故C正确;不能得到,故D错误;故选:D.【点睛】本题考查了相似三角形的判定和性质,平行线分线段成比例定理,解题的关键是熟练掌握平行线分线段成比例定理.5、D【分析】要判断所给方程是有两个不相等的实数根,只要找出方程的判别式,根据判别式的正负情况即可作出判断.有两个不相等的实数根的方程,即判别式的值大于0的一元二次方程.【详解】A、△=0-4×1×1=-4<0,没有实数根;B、△=22-4×1×1=0,有两个相等的实数根;C、△=22-4×1×3=-8<0,没有实数根;D、△=22-4×1×(-3)=16>0,有两个不相等的实数根,故选D.【点睛】本题考查了根的判别式,注意掌握一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.6、C【详解】由草坪面积为100m2,可知x、y存在关系y=,然后根据两边长均不小于5m,可得x≥5、y≥5,则x≤20,故选:C.7、B【解析】试题分析:A.∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故A选项错误;B.∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故B选项正确.C.∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故C选项错误;D.∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,也不是轴对称图形,故B选项错误.考点:1.中心对称图形;2.轴对称图形.8、C【解析】按照“左加右减,上加下减”的规律,从而选出答案.【详解】y=2x2向左平移3个单位得到的抛物线的解析式是y=2(x+3)2,故答案选C.【点睛】本题主要考查了抛物线的平移以及抛物线解析式的变换规律,解本题的要点在于熟知“左加右减,上加下减”的变化规律.9、C【分析】根据一元二次方程的概念即可列出等式,求出m的值.【详解】解:若是一元二次方程,则,解得,又∵,∴,故,故答案为C.【点睛】本题考查了一元二次方程的定义,熟知一元二次方程的定义并列出等式是解题的关键.10、B【分析】由二次函数的开口方向,对称轴0<x<1,以及二次函数与y的交点在x轴的上方,与x轴有两个交点等条件来判断各结论的正误即可.【详解】∵二次函数的开口向下,与y轴的交点在y轴的正半轴,∴a<0,c>0,故④正确;∵0<−<1,∴b>0,故①错误;当x=−1时,y=a−b+c<0,∴a+c<b,故③正确;∵二次函数与x轴有两个交点,∴△=b2−4ac>0,故②正确正确的有3个,故选:C.【点睛】此题主要考查了二次函数的图象与系数的关系,要熟练掌握,解答此题的关键是要明确:①二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c).二、填空题(每小题3分,共24分)11、1【分析】根据三角形中位线定理得到AC=2DE=5,AC∥DE,根据勾股定理的逆定理得到∠ACB=90°,根据线段垂直平分线的性质得到DC=BD,根据三角形的周长公式计算即可.【详解】∵D,E分别是AB,BC的中点,∴AC=2DE=5,AC∥DE,AC2+BC2=52+122=169,AB2=132=169,∴AC2+BC2=AB2,∴∠ACB=90°,∵AC∥DE,∴∠DEB=90°,又∵E是BC的中点,∴直线DE是线段BC的垂直平分线,∴DC=BD,∴△ACD的周长=AC+AD+CD=AC+AD+BD=AC+AB=1,故答案为1.【点睛】本题考查的是三角形中位线定理、线段垂直平分线的判定和性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.12、0或2【分析】先根据a☆b=ab-b-1得出关于x的一元二次方程,求出x的值即可.【详解】∵a☆b=ab-b-1,∴2☆x=2x-x-1=x-1,∴x☆(2☆x)=x☆(x-1)=0,即,解得:x1=0,x2=2;故答案为:0或2【点睛】本题考查了解一元二次方程以及新运算,理解题意正确列出一元二次方程是解题的关键.13、-2【分析】根据两点关于原点对称,则两点的横、纵坐标都是互为相反数,可得a、b的值,根据有理数的乘法,可得答案.【详解】解:由点A(a,1)与点B(-2,b)关于原点对称,得

a=2,b=-1.

ab=(2)×(-1)=-2,

故答案为-2.【点睛】本题考查了关于原点对称的点的坐标,利用了关于原点对称的点的坐标规律是:横、纵坐标都是互为相反数.14、15π【分析】利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算.【详解】圆锥的侧面积=•2π•3•5=15π.

故答案是:15π.【点睛】考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.15、【分析】作高线DE,利用勾股定理求出AD,AB的值,然后证明,求DE的长,再利用三角函数定义求解即可.【详解】过点D作于E∵点是边的中点,∴,在中,由∴∴由勾股定理得∵∴∵∴∴∴∴∴故答案为:.【点睛】本题考查了三角函数的问题,掌握勾股定理和锐角三角函数的定义是解题的关键.16、±1【解析】试题解析:抛物线与x轴只有一个交点,则△=b2-4ac=0,故:p2-4×9×4=0,解得p=±1.故答案为±1.17、【分析】根据分式有意义,分母不等于0列式计算即可得解.【详解】由题意得,x+1≠0,解得x≠−1.故答案为x≠−1.【点睛】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(1)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.18、且【分析】根据分母不等于0,且被开方数是非负数列式求解即可.【详解】由题意得x-1≥0且x-2≠0,解得且故答案为:且【点睛】本题考查了代数式有意义时字母的取值范围,代数式有意义时字母的取值范围一般从几个方面考虑:①当代数式是整式时,字母可取全体实数;②当代数式是分式时,考虑分式的分母不能为0;③当代数式是二次根式时,被开方数为非负数.三、解答题(共66分)19、【分析】根据相似三角形对应边比例相等性质求出EF,EH的长,继而求出面积.【详解】解:如图:∵四边形是矩形,AD交EH于点Q,∴∴∴设,则∴解得:.所以,.∴【点睛】本题考查的知识点主要是相似三角形的性质,利用相似三角形对应边比例相等求出有关线段的长是解题的关键.20、(1),D的坐标为(1,4);(2)当m=时△BPE的面积取得最大值为,P的坐标是(,3);(3)存在,M点的坐标为;;;;;【分析】(1)先根据抛物线经过A(-1,0)B(3,0)两点,分别求出a、b的值,再代入抛物线即可求出二次函数的解析式并得出顶点的坐标;(2)先设出BD解析式y=kx+b,再把B、D两点坐标代入求出k、b的值,得出BD解析式,再根据面积公式即可求出最大值以及点的坐标;(3)根据题意利用平行四边形的性质进行分析求值,注意分类讨论.【详解】解:(1)∵二次函数y=ax2+bx+3经过点A(﹣1,0)、B(3,0)∴所以二次函数的解析式为:D的坐标为(1,4)(2)设BD的解析式为y=kx+b∵过点B(3,0),D(1,4)∴解得BD的解析式为y=-2x+6设P(m,)PE⊥y轴于点E∴△BPE的PE边上的高h=S△BPE=×PE×h=m()==∵a=-1<0当m=时△BPE的面积取得最大值为当m=时,y=-2×+6=3P的坐标是(,3)(3)存在这样的点,使得以点,,,为顶点的四边形是平行四边形,当点,,,为顶点的四边形是平行四边形,可得BM平行于PN,则有N点纵坐标等于P点纵坐标,把y=3代入求出N的坐标(0,3)或(2,3),当N的坐标(0,3)或(2,3)时,根据平行四边形性质求得M点的坐标为;,;当BP平行于MN时,根据平行四边形性质求得M点的坐标为;;.M点的坐标为:;;;;.【点睛】本题考查运用待定系数法求得函数的解析式,根据二次函数的解析式求得函数的最值,平行四边形的性质进行计算,注意数形结合的思想.21、(1)详见解析;(3)AE=;(3)≤AE<.【解析】(1)首先得出∠ADE+∠PDB=90°,进而得出∠B+∠A=90°,利用PD=PB得∠EDA=∠A进而得出答案;(3)利用勾股定理得出ED3+PD3=EC3+CP3=PE3,求出AE即可;(3)分别根据当D(P)点在B点时以及当P与C重合时,求出AE的长,进而得出AE的取值范围.【详解】(1)证明:如图1,连接PD.∵DE切⊙O于D.∴PD⊥DE.∴∠ADE+∠PDB=90°.∵∠C=90°.∴∠B+∠A=90°.∵PD=PB.∴∠PDB=∠B.∴∠A=∠ADE.∴AE=DE;(3)解:如图1,连接PE,设DE=AE=x,则EC=8-x,∵PB=PD=3,BC=1.∴PC=3.∵∠PDE=∠C=90°,∴ED3+PD3=EC3+CP3=PE3.∴x3+33=(8-x)3+33.解得x=.∴AE=;(3)解:如图3,当P点在B点时,此时点D也在B点,∵AE=ED,设AE=ED=x,则EC=8-x,∴EC3+BC3=BE3,∴(8-x)3+13=x3,解得:x=,如图3,当P与C重合时,∵AE=ED,设AE=ED=x,则EC=8-x,∴EC3=DC3+DE3,∴(8-x)3=13+x3,解得:x=,∵P为边BC上一个动点(可以包括点C但不包括点B),∴线段AE长度的取值范围为:≤AE<.【点睛】本题主要考查圆的综合应用、切线的性质与判定以及勾股定理等知识,利用数形结合以及分类讨论的思想得出是解题关键.22、,【分析】根据一元二次方程的解法,配方法或者公式法解答即可.【详解】解:由题意可知:a=4,b=﹣2,c=﹣1,∴△=4+16=21,∴x=;【点睛】本题主要考查解一元二次方程,熟练掌握方程各种解法是解答关键.23、(1)顶点D的坐标为(-1,)(2)H(,)(2)K(-,)【分析】(1)将A、B的坐标代入抛物线的解析式中,即可求出待定系数的值,进而可用配方法求出其顶点D的坐标;

(2)根据抛物线的解析式可求出C点的坐标,由于CD是定长,若△CDH的周长最小,那么CH+DH的值最小,由于EF垂直平分线段BC,那么B、C关于直线EF对称,所以BD与EF的交点即为所求的H点;易求得直线BC的解析式,关键是求出直线EF的解析式;由于E是BC的中点,根据B、C的坐标即可求出E点的坐标;可证△CEG∽△COB,根据相似三角形所得的比例线段即可求出CG、OG的长,由此可求出G点坐标,进而可用待定系数法求出直线EF的解析式,由此得解;

(2)过K作x轴的垂线,交直线EF于N;设出K点的横坐标,根据抛物线和直线EF的解析式,即可表示出K、N的纵坐标,也就能得到KN的长,以KN为底,F、E横坐标差的绝对值为高,可求出△KEF的面积,由此可得到关于△KEF的面积与K点横坐标的函数关系式,根据所得函数的性质即可求出其面积的最大值及对应的K点坐标.【详解】(1)由题意,得解得,b=-1.所以抛物线的解析式为,顶点D的坐标为(-1,).(2)设抛物线的对称轴与x轴交于点M.因为EF垂直平分BC,即C关于直线EG的对称点为B,连结BD交于EF于一点,则这一点为所求点H,使DH+CH最小,即最小为DH+CH=DH+HB=BD=.而.∴△CDH的周长最小值为CD+DR+CH=.设直线BD的解析式为y=k1x+b,则解得,b1=2.所以直线BD的解析式为y=x+2.由于BC=2,CE=BC∕2=,Rt△CEG∽△COB,得CE:CO=CG:CB,所以CG=2.3,GO=1.3.G(0,1.3).同理可求得直线EF的解析式为y=x+.联立直线BD与EF的方程,解得使△CDH的周长最小的点H(,).(2)设K(t,),xF<t<xE.过K作x轴的垂线交EF于N.则KN=yK-yN=-(t+)=.所以S△EFK=S△KFN+S△KNE=KN(t+2)+KN(1-t)=2KN=-t2-2t+3=-(t+)2+.即

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论