版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.满足-2<x≤1的数在数轴上表示为()A. B. C. D.2.如图,在△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于点E,若DE=15cm,BE=8cm,则BC的长为()A.15cm B.17cm C.30cm D.32cm3.如图所示,△ABC中AC边上的高线是()A.线段DA B.线段BA C.线段BD D.线段BC4.甲、乙、丙、丁四人进行射箭测试,每人10次射箭成绩的平均成绩都相同,方差分别是S甲2=0.65,S乙2=0.55,S丙2=0.50,S丁2=0.45,则射箭成绩最稳定的是()A.甲 B.乙 C.丙 D.丁5.下列各数中是无理数的是()A. B. C. D.6.等腰三角形是轴对称图形,它的对称轴是()A.中线 B.底边上的中线 C.中线所在的直线 D.底边上的中线所在的直线7.图书馆的标志是浓缩了图书馆文化的符号,下列图书馆标志中,不是轴对称的是()A. B.C. D.8.比较2,,的大小,正确的是()A. B.C. D.9.已知为的内角所对应的边,满足下列条件的三角形不是直角三角形的是()A. B.C. D.10.如图,在等腰ABC中,AB=AC,∠BAC=50°,∠BAC的平分线与AB的垂直平分线交于点O、点C沿EF折叠后与点O重合,则∠CEF的度数是()A.60° B.55° C.50° D.45°11.一组不为零的数a,b,c,d,满足,则以下等式不一定成立的是()A.= B.=C.= D.=12.已知,一次函数和的图像如图,则下列结论:①k<0;②a>0;③若≥,则≤3,则正确的个数是()A.0个 B.1个 C.2个 D.3个二、填空题(每题4分,共24分)13.若a﹣b=1,ab=2,那么a+b的值为_____.14.如图,一次函数y1=x+b与一次函数y2=kx+4的图象交于点P(1,3),则关于x的不等式x+b>kx+4的解集是_____.15.如图,是等边三角形,,、相交于点,于,,,则的长是______.16.已知,,则的值为____.17.多项式kx2-9xy-10y2可分解因式得(mx+2y)(3x-5y),则k=_______,m=________.18.已知,x、y为实数,且y=﹣+3,则x+y=_____.三、解答题(共78分)19.(8分)如图,有两棵树,一棵高10米,另一棵高4米,两树相距8米.一只小鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行多少米?20.(8分)在购买某场足球赛门票时,设购买门票数为x(张),总费用为y(元).现有两种购买方案:方案一:若单位赞助广告费10000元,则该单位所购门票的价格为每张60元;(总费用=广告赞助费+门票费)方案二:购买门票方式如图所示.解答下列问题:(1)方案一中,y与x的函数关系式为;方案二中,当0≤x≤100时,y与x的函数关系式为,当x>100时,y与x的函数关系式为;(2)如果购买本场足球赛门票超过100张,你将选择哪一种方案,使总费用最省?请说明理由;(3)甲、乙两单位分别采用方案一、方案二购买本场足球赛门票共700张,花去总费用计58000元,求甲、乙两单位各购买门票多少张.21.(8分)如图,在中,,,,在上,且,过点作射线(AN与BC在AC同侧),若动点从点出发,沿射线匀速运动,运动速度为/,设点运动时间为秒.(1)经过_______秒时,是等腰直角三角形?(2)当于点时,求此时的值;(3)过点作于点,已知,请问是否存在点,使是以为腰的等腰三角形?对存在的情况,请求出t的值,对不存在的情况,请说明理由.22.(10分)在中,,点、分别在、上,,与相交于点.(1)求证:;(2)求证:.23.(10分)因式分解(1)a3﹣16a;(2)8a2﹣8a3﹣2a24.(10分)如图,四边形ABDC中,∠D=∠ABD=90゜,点O为BD的中点,且OA平分∠BAC.(1)求证:OC平分∠ACD;(2)求证:AB+CD=AC25.(12分)如图,在等边三角形ABC的外侧作直线AP,点C关于直线AP的对称点为点D,连接AD,BD,其中BD交直线AP于点E.(1)依题意补全图形;(2)若∠PAC=20°,求∠AEB的度数;26.如图(1)是一个长为,宽为的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按照图(2)的形状拼成一个正方形.(1)请用两种不同的方法求图(2)中阴影部分的面积。方法1.________________;方法2:______________.请你写出下列三个式子:之间的等量关系___________;(2)根据(1)题中的等量关系,解决下列问题:已知,求;(3)实际上有许多恒等式可以用图形的面积来表示,如图(3),它表示的恒等式是___________.
参考答案一、选择题(每题4分,共48分)1、B【分析】-2<x≤1表示不等式x>﹣2和不等式x≤1的公共部分。实心圆点包括该点,空心圆圈不包括该点,大于向右小于向左.即可求解.【详解】∵x>﹣2,∴表示﹣2的点是空心点折线的方向是向右的.又∵x≤1,∴表示1的点是实心点折线的方向是向左的.∴数轴表示的解集为:;故答案为B.【点睛】此题主要考查了在数轴上表示不等式组的解集.解题的关键是掌握在数轴上表示不等式组的解集的方法.2、D【分析】先利用角平分线的性质得到DC=15,再根据勾股定理计算出BD,然后计算CD+BD即可.【详解】解:∵AD平分∠CAB,DC⊥AC,DE⊥AB,∴DC=DE=15,在Rt△BDE中,BD==17,∴BC=CD+BD=15+17=32(cm).故选:D.【点睛】本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.3、C【解析】从三角形的一个顶点向底边作垂线,垂足与顶点之间的线段叫做三角形的高.【详解】由图可知,中AC边上的高线是BD.故选:C.【点睛】掌握垂线的定义是解题的关键.4、D【详解】∵射箭成绩的平均成绩都相同,方差分别是S甲2=0.65,S乙2=0.55,S丙2=0.50,S丁2=0.45,∴S2甲>S2乙>S2丙>S2丁,∴射箭成绩最稳定的是丁;故选D.5、B【分析】分别根据无理数的定义即可判定选择项.【详解】A、是有限小数,是有理数,不是无理数;B、是无理数;C、是分数,是有理数,不是无理数;D、是整数,是有理数,不是无理数;故选:B.【点睛】本题主要考查了无理数的定义,其中初中范围内学习的无理数有:,等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.6、D【分析】根据等腰三角形的三线合一的性质,可得出答案.【详解】解:等腰三角形的对称轴是顶角的角平分线所在直线,底边高所在的直线,底边中线所在直线,
A、中线,错误;
B、底边上的中线,错误;
C、中线所在的直线,错误;
D、底边上的中线所在的直线,正确.
故选D.【点睛】本题考查了轴对称图形的知识,解答本题的关键是掌握轴对称及对称轴的定义.7、A【分析】根据轴对称图形的概念解答即可.【详解】A、不是轴对称图形;B、是轴对称图形;C、是轴对称图形;D、是轴对称图形;故选A.【点睛】本题考查的是轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,熟记轴对称图形的定义是解题关键.8、C【分析】先分别求出这三个数的六次方,然后比较它们的六次方的大小,即可比较这三个数的大小.【详解】解:∵26=64,,,而49<64<125∴∴故选C.【点睛】此题考查的是无理数的比较大小,根据开方和乘方互为逆运算将无理数化为有理数,然后比较大小是解决此题的关键.9、C【分析】运用直角三角形的判定方法:当一个角是直角时,或两边的平方和等于第三条边的平方,也可得出它是直角三角形.分别判定即可.【详解】A、∵,∴,即,∴△ABC是直角三角形,故本选项符合题意;B、∵,∴∴a2+b2=c2,∴△ABC是直角三角形,故本选项不符合题意;C、∵∠A:∠B:∠C=5:4:3,又∵∠A+∠B+∠C=180°,∴最大角∠A=75°,∴△ABC不是直角三角形,故本选项符合题意;D、∵a=c,b=c,(c)2+(c)2=c2,∴a2+b2=c2,∴△ABC是直角三角形,故本选项不符合题意.故选:C.【点睛】此题主要考查了勾股定理的逆定理、直角三角形的判定方法,灵活的应用此定理是解决问题的关键.10、C【分析】连接OB,OC,先求出∠BAO=25°,进而求出∠OBC=40°,求出∠COE=∠OCB=40°,最后根据等腰三角形的性质,问题即可解决.【详解】如图,连接OB,∵∠BAC=50°,AO为∠BAC的平分线,∴∠BAO=∠BAC=12×50°=25°.又∵AB=AC,∴∠ABC=∠ACB=65°.∵DO是AB的垂直平分线,∴OA=OB,∴∠ABO=∠BAO=25°,∴∠OBC=∠ABC−∠ABO=65°−25°=40°.∵AO为∠BAC的平分线,AB=AC,∴直线AO垂直平分BC,∴OB=OC,∴∠OCB=∠OBC=40°,∵将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,∴OE=CE.∴∠COE=∠OCB=40°;
在△OCE中,∠OEC=180°−∠COE−∠OCB=180°−40°−40°=100°∴∠CEF=∠CEO=50°.故选C.【点睛】本题考查了等腰三角形的性质的运用、垂直平分线性质的运用、折叠的性质,解答时运用等腰三角形的性质和垂直平分线的性质是解答的关键.11、C【分析】根据比例的性质,对所给选项进行整理,找到不一定正确的选项即可.【详解】解:一组不为零的数,,,,满足,,,即,故A、B一定成立;设,∴,,∴,,∴,故D一定成立;若则,则需,∵、不一定相等,故不能得出,故D不一定成立.故选:.【点睛】本题考查了比例性质;根据比例的性质灵活变形是解题关键.12、C【分析】根据y1=kx+b和y2=x+a的图象可知:k<0,a<0,所以当x3时,y1图象在y2的图象的上方.【详解】根据图示及数据可知:
①y1=kx+b的图象经过一、二四象限,则k<0,故①正确;
②y2=x+a的图象与y轴的交点在x轴的下方,a<0,故②错误;
③当x3时,y1图象在y2的图象的上方,则y1y2,故③正确.
综上,正确的个数是2个.
故选:C.【点睛】本题考查了一次函数的图象,考查学生的分析能力和读图能力,一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.二、填空题(每题4分,共24分)13、±1.【分析】把a-b=1两边平方,利用完全平方公式化简,整理求出a2+b2的值,原式平方后利用完全平方公式化简,开方即可求出值.【详解】把a﹣b=1,两边平方得:(a﹣b)2=a2+b2﹣2ab=1,把ab=2代入得:a2+b2=5,∴(a+b)2=a2+b2+2ab=9,则a+b=±1,故答案为:±1【点睛】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.14、x>1.【解析】试题解析:∵一次函数与交于点,∴当时,由图可得:.故答案为.15、1【分析】由已知条件,先证明△ABE≌△CAD得∠BPQ=60°,可得BP=2PQ=6,AD=BE.即可求解.【详解】∵△ABC为等边三角形,
∴AB=CA,∠BAE=∠ACD=60°;
又∵AE=CD,
在△ABE和△CAD中,,
∴△ABE≌△CAD;
∴BE=AD,∠CAD=∠ABE;
∴∠BPQ=∠ABE+∠BAD=∠BAD+∠CAD=∠BAE=60°;
∵BQ⊥AD,
∴∠AQB=90°,则∠PBQ=90°-60°=30°;
∵PQ=3,
∴在Rt△BPQ中,BP=2PQ=6;
又∵PE=1,
∴AD=BE=BP+PE=1.
故答案为:1.【点睛】本题主要考查了全等三角形的判定与性质及等边三角形的性质及含30°的角的直角三角形的性质;巧妙借助三角形全等和直角三角形中30°的性质求解是正确解答本题的关键.16、2020【分析】已知等式利用完全平方公式化简整理即可求出未知式子的值.【详解】∵,∴故答案是:【点睛】本题考查了完全平方公式,熟练掌握公式是解题的关键.17、k=9m=1【分析】直接利用多项式乘法将原式化简,进而得出关于m,k的等式求出答案即可.【详解】解:∵kx2-9xy-10y2=(mx+2y)(1x-5y),
∴kx2-9xy-10y2=1mx2-5mxy+6xy-10y2=1mx2-(5mxy-6xy)-10y2,
∴解得:故答案为:9,1.【点睛】此题主要考查了十字相乘法的应用,正确利用多项式乘法是解题关键.18、2或2.【分析】直接利用二次根式有意义的条件求出x好y的值,然后代入x+y计算即可.【详解】解:由题意知,x2﹣2≥0且2﹣x2≥0,所以x=±2.所以y=3.所以x+y=2或2故答案是:2或2.【点睛】此题主要考查了二次根式有意义的条件以及平方根,正确得出x,y的值是解题关键.三、解答题(共78分)19、10【分析】试题分析:由题意可构建直角三角形求出AC的长,过C点作CE⊥AB于E,则四边形EBDC是矩形.BE=CD,AE可求,CE=BD,在Rt△AEC中,由两条直角边求出AC长.试题解析:如图,设大树高为AB=10m,小树高为CD=4m,过C点作CE⊥AB于E,则四边形EBDC是矩形.∴EB=CD=4m,EC=8m.AE=AB-EB=10-4=6m.连接AC,在Rt△AEC中,.考点:1.勾股定理的运用;2.矩形性质.【详解】请在此输入详解!20、解:(1)方案一:y=60x+10000;当0≤x≤100时,y=100x;当x>100时,y=80x+2000;(2)当60x+10000>80x+2000时,即x<400时,选方案二进行购买,当60x+10000=80x+2000时,即x=400时,两种方案都可以,当60x+10000<80x+2000时,即x>400时,选方案一进行购买;(3)甲、乙单位购买本次足球赛门票分别为500张、200张.【分析】(1)根据题意可直接写出用x表示的总费用表达式;(2)根据方案一与方案二的函数关系式分类讨论;(3)假设乙单位购买了a张门票,那么甲单位的购买的就是700-a张门票,分别就乙单位按照方案二:①a不超过100;②a超过100两种情况讨论a取值的合理性.从而确定求甲、乙两单位各购买门票数.【详解】解:(1)方案一:y=60x+10000;当0≤x≤100时,y=100x;当x>100时,y=80x+2000;(2)因为方案一y与x的函数关系式为y=60x+10000,∵x>100,方案二的y与x的函数关系式为y=80x+2000;当60x+10000>80x+2000时,即x<400时,选方案二进行购买,当60x+10000=80x+2000时,即x=400时,两种方案都可以,当60x+10000<80x+2000时,即x>400时,选方案一进行购买;(3)设甲、乙单位购买本次足球赛门票数分别为a张、b张;∵甲、乙单位分别采用方案一和方案二购买本次足球比赛门票,∴乙公司购买本次足球赛门票有两种情况:b≤100或b>100.①b≤100时,乙公司购买本次足球赛门票费为100b,解得不符合题意,舍去;②当b>100时,乙公司购买本次足球赛门票费为80b+2000,解得符合题意答:甲、乙单位购买本次足球赛门票分别为500张、200张.21、(1)6;(1)8;(3)1【分析】(1)得出两腰AM=AP时,即可得出答案;(1)根据垂直的定义和同角的余角相等得到∠CBA=∠AMP,证明△ACB≌△PAM,得出比例式,代入求出AP,即可得出答案;(3)由勾股定理求出BM的值,可知BD>BM,则不存在点P使的等腰三角形,又由AM<BM,则存在点P使的等腰三角形,可证△MCB≌△PAM得PA的长,即可求出t的值.【详解】解:(1)∵∠PAM=90°,当是等腰直角三角形时,则有PA=AM=6cm,∴t=6÷1=6(s)故答案为:6;(1)∵,∴∠AQM=90°,∠PAM=90°,∴∠AMP+∠BAC=90°,又∵∠C=90°,∴∠CBA+∠BAC=90°,∴∠AMP=∠CBA,在△ACB和△PAM中,,∴△ACB≌△PAM(ASA),∴PA=AC,∵,∴,∴t=8÷1=8(s),此时的值为8;(3)∵,,,,∴,由勾股定理得:,∵,,∴BD>BM,则不存在点P使的等腰三角形,又∵AM<BM,则存在点P使的等腰三角形,在Rt△MCB和Rt△PAM中,,∴△MCB≌△PAM(HL),∴PA=CM=1cm,∴t=1÷1=1(s),此时的值为1.【点睛】本题考查了等腰直角三角形的性质、勾股定理和全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键.22、(1)见详解;(2)见详解【分析】(1)根据等腰三角形的性质等边对等角、全等三角形的判定进行推导即可;(2)由(1)的结论根据全等三角形的性质可得,再利用等式的性质可得,最后由等腰三角形的判定等角对等边可得结论.【详解】(1)证明:∵∴在和中∴(2)证明:∵∴∴.【点睛】本题考查了等腰三角形的性质和判定、全等三角形的判定和性质、等式的性质等知识点,体现了逻辑推理的核心素养.23、(1)a(a+4)(a﹣4);(1)﹣1a(1a﹣1)1.【分析】(1)首先提公因式a,再利用平方差进行分解即可;(1)首先提公因式﹣1a,再利用完全平方公式进行分解即可.【详解】(1)原式=a(a1﹣16)=a(a+4)(a﹣4);(1)原式=﹣1a(4a1﹣4a+1)=﹣1a(1a﹣1)1.【点睛】此题主要考查因式分解,解题的关键是熟知提取公因式法与公式法的应用.24、(1)见解析;(2)见解析【分析】(1)首先根据角平分线的性质得出,然后通过线段中点和等量代换得出,最后根据角平分线的性质定理的逆定理得出结论即可;(2)首先根据HL证明,得出,同理可得,最后通过等量代换即可得出结论.【详解】(1)如图,过点O作于点E,OA平分∠BAC,∠ABD=90°,,.∵点O为BD的中点,,.∵∠ABD=90°,,OC平分∠ACD;(2)在和中,,,同理可得,.,.【点睛】本题主要考查角平分线的性质定理及逆定理,直角三角形的判定及性质,掌握这些性质及判定是解题的关键.25、(1)见详解;(2)60°【分析】(1)作出点C关于直线AP的对称点为点D,连接AD,BD,即可得到所作图形;(2)由等边三角形的性质和轴对称的性质,可得AB=AD,∠BAD=100°,结合三角形内角和定理,求出∠ADB的度数,然后由三角形外角的性质,即可求解.【详解】(1)补全图形,如图所示:(2)∵点C关于直线AP的对称点为点D,∴AC=AD,∠PAD=∠PAC=20°,∵三角形ABC是等边三角形,∴AB=AC,∠BAC=60°,∴AB=AD,∠B
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度跨境电子商务平台搭建合同
- 2024年合同管理招投标理论与应用考卷3篇
- 2024年度设备购买合同:某制造厂购买生产线设备的采购协议3篇
- 2024年商业店铺租赁合同
- 2024年停车场建设合作协议3篇
- 2024年乌鲁木齐客运考题
- 2024年信用卡积分奖励计划合同3篇
- 2024年江门申请客运从业资格证考试
- 2024年宜春汽车客运从业资格考试
- 2024年广西客运员考试考什么内容
- 企业防盗抢防破坏安全培训
- clsim100-32药敏试验标准2023中文版
- 人教版初一音乐上学期期末考试试题及答案
- 加工工艺及夹具设计答辩问题
- 2024年四川郎酒股份有限公司招聘笔试参考题库附带答案详解
- 2024年网络安全知识竞赛考试题库400题(含答案)
- CJJ2-90市政桥梁工程质量检验评定标准
- 太阳能光伏技术在农村光伏农业中的应用
- 国开2023年春理工英语3机考网考期末复习资料参考答案
- 铝合金机加工培训课件
- T-CPHA 20-2023 集装箱起重机远程控制F5G网络系统技术要求
评论
0/150
提交评论