山东省聊城市东阿县2022-2023学年数学九上期末达标测试试题含解析_第1页
山东省聊城市东阿县2022-2023学年数学九上期末达标测试试题含解析_第2页
山东省聊城市东阿县2022-2023学年数学九上期末达标测试试题含解析_第3页
山东省聊城市东阿县2022-2023学年数学九上期末达标测试试题含解析_第4页
山东省聊城市东阿县2022-2023学年数学九上期末达标测试试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.一件衣服225元,连续两次降价x%后售价为144元,则x=()A.0.2 B.2 C.8 D.202.如图,在平行四边形中,点在边上,,连接交于点,则的面积与的面积之比为()A. B. C. D.3.如图,正六边形的边长是1cm,则线段AB和CD之间的距离为()A.2cm B.cm C.cm D.1cm4.将抛物线y=x2﹣4x﹣4向左平移3个单位,再向上平移5个单位,得到抛物线的函数表达式为()A.y=(x+1)2﹣13 B.y=(x﹣5)2﹣3C.y=(x﹣5)2﹣13 D.y=(x+1)2﹣35.如图,已知矩形ABCD的对角线AC的长为8,连接矩形ABCD各边中点E、F、G、H得到四边形EFGH,则四边形EFGH的周长为()A.12 B.16 C.24 D.326.下列一元二次方程中,没有实数根的是().A. B.C. D.7.已知二次函数y=ax2+bx+c的y与x的部分对应值如下表:则下列判断中正确的是()

x

﹣1

0

1

2

y

﹣5

1

3

1

…A.抛物线开口向上

B.抛物线与y轴交于负半轴C.当x=3时,y<0

D.方程ax2+bx+c=0有两个相等实数根8.如图,△ABC是等腰直角三角形,∠A=90°,BC=4,点P是△ABC边上一动点,沿B→A→C的路径移动,过点P作PD⊥BC于点D,设BD=x,△BDP的面积为y,则下列能大致反映y与x函数关系的图象是()A. B. C. D.9.若点A(1,y1)、B(2,y2)都在反比例函数的图象上,则y1、y2的大小关系为A.y1<y2 B.y1≤y2 C.y1>y2 D.y1≥y210.如图,中,,,点是的外心.则()A. B. C. D.二、填空题(每小题3分,共24分)11.一元二次方程的两根为,,则的值为____________.12.如图,E,F分别为矩形ABCD的边AD,BC的中点,且矩形ABCD与矩形EABF相似,AB=1,则BC的长为_____.13.如图,直线与双曲线(k≠0)相交于A(﹣1,)、B两点,在y轴上找一点P,当PA+PB的值最小时,点P的坐标为_________.14.反比例函数的图象具有下列特征:在所在象限内,的值随值增大而减小.那么的取值范围是_____________.15.关于的一元二次方程有一个解是,另一个根为_______.16.在某市中考体考前,某初三学生对自己某次实心球训练的录像进行分析,发现实心球飞行高度y(米)与水平距离x(米)之间的关系为,由此可知该生此次实心球训练的成绩为_______米.17.若二次函数y=2(x+1)2+3的图象上有三个不同的点A(x1,4)、B(x1+x2,n)、C(x2,4),则n的值为_____.18.如图,矩形EFGH内接于△ABC,且边FG落在BC上.若BC=3,AD=2,EF=EH,那么EH的长为___.三、解答题(共66分)19.(10分)据某省商务厅最新消息,2018年第一季度该省企业对“一带一路”沿线国家的投资额为10亿美元,第三季度的投资额增加到了14.4亿美元.求该省第二、三季度投资额的平均增长率.20.(6分)如图,是的直径,是的切线,切点为,交于点,点是的中点.(1)试判断直线与的位置关系,并说明理由;(2)若的半径为2,,,求图中阴影部分的周长.21.(6分)计算(1)(2)22.(8分)解方程(1)(x+1)2﹣25=0(2)x2﹣4x﹣2=023.(8分)如图,是的直径,弦于点,点在上,恰好经过圆心,连接.(1)若,,求的直径;(2)若,求的度数.24.(8分)如图①,BC是⊙O的直径,点A在⊙O上,AD⊥BC垂足为D,弧AE=弧AB,BE分别交AD、AC于点F、G.(1)判断△FAG的形状,并说明理由;(2)如图②若点E与点A在直径BC的两侧,BE、AC的延长线交于点G,AD的延长线交BE于点F,其余条件不变(1)中的结论还成立吗?请说明理由.(3)在(2)的条件下,若BG=26,DF=5,求⊙O的直径BC.25.(10分)(1)计算:.(2)如图,正方形纸板在投影面上的正投影为,其中边与投影面平行,与投影面不平行.若正方形的边长为厘米,,求其投影的面积.26.(10分)如图,在平面直角坐标系中,的三个顶点的坐标分别为点、、.(1)的外接圆圆心的坐标为.(2)①以点为位似中心,在网格区域内画出,使得与位似,且点与点对应,位似比为2:1,②点坐标为.(3)的面积为个平方单位.

参考答案一、选择题(每小题3分,共30分)1、D【分析】根据该衣服的原价及经过两次降价后的价格,即可得出关于x的一元二次方程,解之取其较小值即可得出结论.【详解】解:依题意,得:225(1﹣x%)2=144,解得:x1=20,x2=180(不合题意,舍去).故选:D.【点睛】本题考查一元二次方程的应用,根据题意得出关于x的一元二次方程是解题关键.2、C【分析】先求出,再根据平行四边形的性质可得AB∥CD,AB=CD,从而证出△BAF∽△DEF,,然后根据相似三角形的性质即可求出结论.【详解】解:∵∴∴∵四边形ABCD是平行四边形∴AB∥CD,AB=CD∴△BAF∽△DEF,∴故选C.【点睛】此题考查的是平行四边形的性质和相似三角形的判定及性质,掌握平行四边形的性质、利用平行证相似和相似三角形的面积比等于相似比的平方是解决此题的关键.3、B【分析】连接AC,过E作EF⊥AC于F,根据正六边形的特点求出∠AEC的度数,再由等腰三角形的性质求出∠EAF的度数,由特殊角的三角函数值求出AF的长,进而可求出AC的长.【详解】如图,连接AC,过E作EF⊥AC于F,∵AE=EC,∴△AEC是等腰三角形,∴AF=CF,∵此多边形为正六边形,∴∠AEC==120°,∴∠AEF==60°,∴∠EAF=30°,∴AF=AE×cos30°=1×=,∴AC=,故选:B.【点睛】本题考查了正多边形的应用,等腰三角形的性质和锐角三角函数,掌握知识点是解题关键.4、D【详解】因为y=x2-4x-4=(x-2)2-8,以抛物线y=x2-4x-4的顶点坐标为(2,-8),把点(2,-8)向左平移1个单位,再向上平移5个单位所得对应点的坐标为(-1,-1),所以平移后的抛物线的函数表达式为y=(x+1)2-1.故选D.5、B【分析】根据三角形中位线定理易得四边形EFGH的各边长等于矩形对角线的一半,而矩形对角线是相等的,都为8,那么就求得了各边长,让各边长相加即可.【详解】解:∵H、G是AD与CD的中点,

∴HG是△ACD的中位线,

∴HG=AC=4cm,

同理EF=4cm,根据矩形的对角线相等,连接BD,得到:EH=FG=4cm,

∴四边形EFGH的周长为16cm.

故选:B.【点睛】本题考查了中点四边形.解题时,利用了“三角形中位线等于第三边的一半”的性质.6、D【分析】分别计算出每个方程的判别式即可判断.【详解】A、∵△=4-4×1×0=4>0,∴方程有两个不相等的实数根,故本选项不符合题意;B、∵△=16-4×1×(-1)=20>0,∴方程有两个不相等的实数根,故本选项不符合题意;C、∵△=25-4×3×2=1>0,∴方程有两个不相等的实数根,故本选项不符合题意;D、∵△=16-4×2×3=-8<0,∴方程没有实数根,故本选项正确;故选:D.【点睛】本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.7、C【解析】根据表格的数据,描点连线得,根据函数图像,得:抛物线开口向下;抛物线与y轴交于正半轴;当x=3时,y<0;方程有两个相等实数根.故选C.8、B【分析】过A点作AH⊥BC于H,利用等腰直角三角形的性质得到∠B=∠C=45°,BH=CH=AH=BC=2,分类讨论:当0≤x≤2时,如图1,易得PD=BD=x,根据三角形面积公式得到y=x2;当2<x≤4时,如图2,易得PD=CD=4-x,根据三角形面积公式得到y=-x2+2x,于是可判断当0≤x≤2时,y与x的函数关系的图象为开口向上的抛物线的一部分,当2<x≤4时,y与x的函数关系的图象为开口向下的抛物线的一部分,然后利用此特征可对四个选项进行判断.【详解】解:过A点作AH⊥BC于H,∵△ABC是等腰直角三角形,∴∠B=∠C=45°,BH=CH=AH=BC=2,当0≤x≤2时,如图1,∵∠B=45°,∴PD=BD=x,∴y=•x•x=;当2<x≤4时,如图2,∵∠C=45°,∴PD=CD=4﹣x,∴y=•(4﹣x)•x=,故选B.9、C【解析】根据反比例函数图象的增减性进行判断:根据反比例函数的性质:当时,图象分别位于第一、三象限,在每个象限内,y随x的增大而减小;当时,图象分别位于第二、四象限,在每个象限内,y随x的增大而增大.∵反比例函数的解析式中的,∴点A(1,y1)、B(1,y1)都位于第四象限.又∵1<1,∴y1>y1.故选C.10、C【分析】根据三角形内角和定理求出∠A=70°,根据圆周角定理解答即可.【详解】解:∵∠ABC=50°,∠ACB=60°

∴∠A=70°

∵点O是△ABC的外心,

∴∠BOC=2∠A=140°,

故选:C【点睛】本题考查的是三角形内角和定理、外心的定义和圆周角定理.二、填空题(每小题3分,共24分)11、2【解析】根据一元二次方程根的意义可得+2=0,根据一元二次方程根与系数的关系可得=2,把相关数值代入所求的代数式即可得.【详解】由题意得:+2=0,=2,∴=-2,=4,∴=-2+4=2,故答案为2.【点睛】本题考查了一元二次方程根的意义,一元二次方程根与系数的关系等,熟练掌握相关内容是解题的关键.12、【分析】根据相似多边形的性质列出比例式,计算即可.【详解】∵矩形ABCD与矩形EABF相似,∴=,即=,解得,AD=,∴矩形ABCD的面积=AB•AD=,故答案为:.【点睛】本题考查了相似多边形的性质,掌握相似多边形的对应边的比相等是解题的关键.13、(0,).【解析】试题分析:把点A坐标代入y=x+4得a=3,即A(﹣1,3),把点A坐标代入双曲线的解析式得3=﹣k,即k=﹣3,联立两函数解析式得:,解得:,,即点B坐标为:(﹣3,1),作出点A关于y轴的对称点C,连接BC,与y轴的交点即为点P,使得PA+PB的值最小,则点C坐标为:(1,3),设直线BC的解析式为:y=ax+b,把B、C的坐标代入得:,解得:,所以函数解析式为:y=x+,则与y轴的交点为:(0,).考点:反比例函数与一次函数的交点问题;轴对称-最短路线问题.14、【分析】直接利用当k>1,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;当k<1,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大,进而得出答案.【详解】解:∵反比例函数的图象在所在象限内,y的值随x值的增大而减小,

∴k>1.

故答案为:k>1.【点睛】此题主要考查了反比例函数的性质,掌握基本性质是解题的关键.15、【分析】一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即把0代入方程求解可得m的值;把m的值代入一元二次方程中,求出x的值,即可得出答案.【详解】解:把x=0代入方程(m+2)x2+3x+m2-4=0得到m2-4=0,解得:m=±2,∵m-2≠0,∴m=-2,当m=-2时,原方程为:-4x2+3x=0解得:x1=0,x2=,则方程的另一根为x=.【点睛】本题主要考查对一元二次方程的解,解一元二次方程等知识点的理解和掌握,能求出m的值是解此题的关键.16、1【分析】根据铅球落地时,高度,把实际问题可理解为当时,求x的值即可.【详解】解:当时,,解得,(舍去),.故答案为1.【点睛】本题考查了二次函数的实际应用,解析式中自变量与函数表达的实际意义;结合题意,选取函数或自变量的特殊值,列出方程求解是解题关键.17、1【分析】先根据点A,C的坐标,建立方程求出x1+x2=-2,代入二次函数解析式即可得出结论.【详解】∵A(x1,4)、C(x2,4)在二次函数y=2(x+1)2+3的图象上,∴2(x+1)2+3=4,∴2x2+4x+1=0,根据根与系数的关系得,x1+x2=-2,∵B(x1+x2,n)在二次函数y=2(x+1)2+3的图象上,∴n=2(-2+1)2+3=1,故答案为:1.【点睛】此题主要考查了二次函数图象上点的特点,根与系数的关系,求出x1+x2=-2是解本题的关键.18、【详解】解:如图所示:∵四边形EFGH是矩形,∴EH∥BC,∴△AEH∽△ABC,∵AM⊥EH,AD⊥BC,∴,设EH=3x,则有EF=2x,AM=AD﹣EF=2﹣2x,∴,解得:x=,则EH=.故答案为.【点睛】本题考查相似三角形的判定与性质;矩形的性质.三、解答题(共66分)19、第二、三季度的平均增长率为20%.【解析】设增长率为x,则第二季度的投资额为10(1+x)万元,第三季度的投资额为10(1+x)2万元,由第三季度投资额为10(1+x)2=14.4万元建立方程求出其解即可.【详解】设该省第二、三季度投资额的平均增长率为x,由题意,得:10(1+x)2=14.4,解得:x1=0.2=20%,x2=﹣2.2(舍去).答:第二、三季度的平均增长率为20%.【点睛】本题考查了增长率问题的数量关系的运用,一元二次方程的解法的运用,解答时根据第三季度投资额为10(1+x)2=14.4建立方程是关键.20、(1)直线与相切;理由见解析;(2).【分析】(1)连接OE、OD,根据切线的性质得到∠OAC=90°,根据三角形中位线定理得到OE∥BC,证明△AOE≌△DOE,根据全等三角形的性质、切线的判定定理证明;(2)根据切线长定理可得DE=AE=2.5,由圆周角定理可得∠AOD=100°,然后根据弧长公式计算弧AD的长,从而可求得结论.【详解】解:(1)直线DE与⊙O相切,理由如下:连接OE、OD,如图,∵AC是⊙O的切线,∴AB⊥AC,∴∠OAC=90°,∵点E是AC的中点,O点为AB的中点,∴OE∥BC,∴∠1=∠B,∠2=∠3,∵OB=OD,∴∠B=∠3,∴∠1=∠2,在△AOE和△DOE中∵OA=OD∠1=∠2OE=OE,∴△AOE≌△DOE(SAS)∴∠ODE=∠OAE=90°,∴DE⊥OD,∵OD为⊙O的半径,∴DE为⊙O的切线;(2)∵DE、AE是⊙O的切线,∴DE=AE,∵点E是AC的中点,∴DE=AE=AC=2.5,∵∠AOD=2∠B=2×50°=100°,∴阴影部分的周长=.【点睛】本题考查的是切线的判定与性质、全等三角形的判定和性质、三角形的中位线、切线长定理、弧长的计算,掌握切线的性质与判定、弧长公式是解题的关键.21、(1)2;(2),【分析】(1)按照开立方,零指数幂,正整数指数幂的法则计算即可;(2)用因式分解法解一元二次方程即可.【详解】(1)解:原式=(2)解:或【点睛】本题主要考查实数的混合运算和解一元二次方程,掌握实数混合运算的法则和因式分解法是解题的关键.22、(1)x1=4,x2=﹣6;(2)x1=2+,x2=2﹣【分析】(1)利用直接开平方法解出方程;(2)先求出一元二次方程的判别式,再解出方程.【详解】解:(1)(x+1)2﹣25=0,(x+1)2=25,x+1=±5,x=±5﹣1,x1=4,x2=﹣6;(2)x2﹣4x﹣2=0,∵a=1,b=﹣4,c=﹣2,∴△=b2﹣4ac=(﹣4)2﹣4×1×(﹣2)=24>0,∴x==2±,即x1=2+,x2=2﹣.【点睛】本题考查了一元二次方程的解法,熟练掌握求根公式是解题关键.23、(1)1;(2)【分析】(1)由CD=16,BE=4,根据垂径定理得出CE=DE=8,设⊙O的半径为r,则,根据勾股定理即可求得结果;

(2)由∠M=∠D,∠DOB=2∠D,结合直角三角形可以求得结果;(2)由OM=OB得到∠B=∠M,根据三角形外角性质得∠DOB=∠B+∠M=2∠B,则2∠B+∠D=90°,加上∠B=∠D,所以2∠D+∠D=90°,然后解方程即可得∠D的度数;【详解】解:(1)∵AB⊥CD,CD=16,

∴CE=DE=8,

设,

又∵BE=4,

∴∴,

解得:,

∴⊙O的直径是1.(2)∵OM=OB,

∴∠B=∠M,

∴∠DOB=∠B+∠M=2∠B,

∵∠DOB+∠D=90°,

∴2∠B+∠D=90°,

∵,∴∠B=∠D,

∴2∠D+∠D=90°,

∴∠D=30°;【点睛】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理.24、(1)△FAG是等腰三角形,理由见解析;(2)成立,理由见解析;(3)BC=.【分析】(1)首先根据圆周角定理及垂直的定义得到∠BAD+∠CAD=90°,∠C+∠CAD=90°,从而得到∠BAD=∠C,然后利用等弧对等角等知识得到AF=BF,从而证得FA=FG,判定等腰三角形;(2)成立,同(1)的证明方法即可得答案;(3)由(2)知∠DAC=∠AGB,推出∠BAD=∠ABG,得到F为BG的中点根据直角三角形的性质得到AF=BF=BG=13,求得AD=AF﹣DF=13﹣5=8,根据勾股定理得到BD=12,AB=4,由∠ABC=∠ABD,∠BAC=∠ADB=90°可证明△ABC∽△DBA,根据相似三角形的性质即可得到结论.【详解】(1)△FAG等腰三角形;理由如下:∵BC为直径,∴∠BAC=90°,∴∠ABE+∠AGB=90°,∵AD⊥BC,∴∠ADC=90°,∴∠ACD+∠DAC=90°,∵,∴∠ABE=∠ACD,∴∠DAC=∠AGB,∴FA=FG,∴△FAG是等腰三角形.(2)成立,理由如下:∵BC为直径,∴∠BAC=90°,∴∠ABE+∠AGB=90°,∵AD⊥BC,∴∠ADC=90°,∴∠ACD+∠DAC=90°,∵,∴∠ABE=∠ACD,∴∠DAC=∠AGB,∴FA=FG,∴△FAG是等腰三角形.(3)由(2)知∠DAC=∠AGB,且∠BAD+∠DAC=90°,∠ABG+∠A

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论