湖北省武汉二中学2022-2023学年数学九上期末调研模拟试题含解析_第1页
湖北省武汉二中学2022-2023学年数学九上期末调研模拟试题含解析_第2页
湖北省武汉二中学2022-2023学年数学九上期末调研模拟试题含解析_第3页
湖北省武汉二中学2022-2023学年数学九上期末调研模拟试题含解析_第4页
湖北省武汉二中学2022-2023学年数学九上期末调研模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.已知将二次函数y=x²+bx+c的图象向右平移2个单位,再向下平移3个单位,所得图象的解析式为y=x²-4x-5,则b,c的值为()A.b=1,c=6 B.b=1.c=-5 C.b=1.c=-6 D.b=1,c=52.如图,矩形ABCD中,E是AB的中点,将△BCE沿CE翻折,点B落在点F处,tan∠BCE=.设AB=x,△ABF的面积为y,则y与x的函数图象大致为A. B.C. D.3.如图,二次函数y=ax1+bx+c的图象与x轴交于点A(﹣1,0),B(3,0).下列结论:①1a﹣b=0;②(a+c)1<b1;③当﹣1<x<3时,y<0;④当a=1时,将抛物线先向上平移1个单位,再向右平移1个单位,得到抛物线y=(x﹣1)1﹣1.其中正确的是()A.①③ B.②③ C.②④ D.③④4.已知一个三角形的两个内角分别是40°,60°,另一个三角形的两个内角分别是40°,80°,则这两个三角形()A.一定不相似 B.不一定相似 C.一定相似 D.不能确定5.若△ABC∽△ADE,若AB=6,AC=4,AD=3,则AE的长是()A.1 B.2 C.1.5 D.36.点A、B、C是平面内不在同一条直线上的三点,点D是平面内任意一点,若A、B、C、D四点恰能构成一个平行四边形,则在平面内符合这样条件的点D有()A.1个 B.2个 C.3个 D.4个7.在x2□2xy□y2的空格□中,分别填上“+”或“-”,在所得的代数式中,能构成完全平方式的概率是()A.1 B. C. D.8.下列图形中既是中心对称图形又是轴对称图形的是()A. B.C. D.9.在△ABC中,∠C90°.若AB3,BC1,则的值为()A. B. C. D.10.如图,AB是⊙O的直径,C是⊙O上一点(A、B除外),∠BOD=44°,则∠C的度数是()A.44° B.22° C.46° D.36°11.如图,在△ABC中,D、E分别是AB、AC的中点,下列说法中不正确的是()A. B. C.△ADE∽△ABC D.12.如图,点是上的点,,则是()

A. B. C. D.二、填空题(每题4分,共24分)13.抛物线y=﹣x2向上平移1个单位长度得到抛物线的解析式为_____.14.如图是水平放置的水管截面示意图,已知水管的半径为50cm,水面宽AB=80cm,则水深CD约为______cm.15.已知,则的值为___________.16.将抛物线y=-5x2先向左平移2个单位长度,再向下平移3个单位长度后,得到新的抛物线的表达式是________.17.如图,在中,,,,点D、E分别是AB、AC的中点,CF是的平分线,交ED的延长线于点F,则DF的长是______.18.将抛物线y=x2先沿x轴方向向左平移2个单位,再沿y轴方向向下平移3个单位,所得抛物线的解析式是__.三、解答题(共78分)19.(8分)化简求值:,其中a=2cos30°+tan45°.20.(8分)如图,BD是平行四边形ABCD的对角线,DE⊥AB于点E,过点E的直线交BC于点G,且BG=CG.(1)求证:GD=EG.(2)若BD⊥EG垂足为O,BO=2,DO=4,画出图形并求出四边形ABCD的面积.(3)在(2)的条件下,以O为旋转中心顺时针旋转△GDO,得到△G′D'O,点G′落在BC上时,请直接写出G′E的长.21.(8分)如图,一次函数与反比例函数的图象相交于A(2,2),B(n,4)两点,连接OA、OB.(1)求一次函数和反比例函数的解析式;(2)求△AOB的面积;(3)在直角坐标系中,是否存在一点P,使以P、A、O、B为顶点的四边形是平行四边形?若存在,直接写出点P的坐标;若不存在,请说明理由.22.(10分)如图,在平面直角坐标系中,正方形OABC的顶点O与坐标原点重合,其边长为2,点A,点C分别在轴,轴的正半轴上.函数的图象与CB交于点D,函数(为常数,)的图象经过点D,与AB交于点E,与函数的图象在第三象限内交于点F,连接AF、EF.(1)求函数的表达式,并直接写出E、F两点的坐标.(2)求△AEF的面积.23.(10分)在一个不透明的盒子中装有大小和形状相同的3个红球和2个白球,把它们充分搅匀.(1)“从中任意抽取1个球不是红球就是白球”是事件,“从中任意抽取1个球是黑球”是事件;(2)从中任意抽取1个球恰好是红球的概率是;(3)学校决定在甲、乙两名同学中选取一名作为学生代表发言,制定如下规则:从盒子中任取两个球,若两球同色,则选甲;若两球异色,则选乙.你认为这个规则公平吗?请用列表法或画树状图法加以说明.24.(10分)一家公司招考员工,每位考生要在A、B、C、D、E这5道试题中随机抽出2道题回答,规定答对其中1题即为合格.已知某位考生会答A、B两题,试求这位考生合格的概率.25.(12分)如图,△ABC中,∠BAC=120o,以BC为边向外作等边△BCD,把△ABD绕着D点按顺时针方向旋转60o后到△ECD的位置.若AB=6,AC=4,求∠BAD的度数和AD的长.26.如图,AB为⊙O的直径,C为⊙O上一点,∠ABC的平分线交⊙O于点D,DE⊥BC于点E.(1)试判断DE与⊙O的位置关系,并说明理由;(2)过点D作DF⊥AB于点F,若BE=3,DF=3,求图中阴影部分的面积.

参考答案一、选择题(每题4分,共48分)1、C【分析】首先抛物线平移时不改变a的值,其中点的坐标平移规律是上加下减,左减右加,利用这个规律即可得到所求抛物线的顶点坐标,然后就可以求出抛物线的解析式.【详解】解:∵y=x2-4x-5=x2-4x+4-9=(x-2)2-9,∴顶点坐标为(2,-9),∴由点的平移可知:向左平移2个单位,再向上平移3个单位,得(1,-2),则原二次函数y=ax2+bx+c的顶点坐标为(1,-2),∵平移不改变a的值,∴a=1,∴原二次函数y=ax2+bx+c=x2-2,∴b=1,c=-2.故选:C.【点睛】此题主要考查了二次函数图象与平移变换,首先根据平移规律求出已知抛物线的顶点坐标,然后求出所求抛物线的顶点坐标,最后就可以求出原二次函数的解析式.2、D【解析】设AB=x,根据折叠,可证明∠AFB=90°,由tan∠BCE=,分别表示EB、BC、CE,进而证明△AFB∽△EBC,根据相似三角形面积之比等于相似比平方,表示△ABF的面积.【详解】设AB=x,则AE=EB=x,由折叠,FE=EB=x,则∠AFB=90°,由tan∠BCE=,∴BC=x,EC=x,∵F、B关于EC对称,∴∠FBA=∠BCE,∴△AFB∽△EBC,∴,∴y=,故选D.【点睛】本题考查了三角函数,相似三角形,三角形面积计算,二次函数图像等知识,利用相似三角形的性质得出△ABF和△EBC的面积比是解题关键.3、D【解析】分析:根据二次函数图象与系数之间的关系即可求出答案.详解:①图象与x轴交于点A(﹣1,0),B(3,0),∴二次函数的图象的对称轴为x==1,∴=1,∴1a+b=0,故①错误;②令x=﹣1,∴y=a﹣b+c=0,∴a+c=b,∴(a+c)1=b1,故②错误;③由图可知:当﹣1<x<3时,y<0,故③正确;④当a=1时,∴y=(x+1)(x﹣3)=(x﹣1)1﹣4将抛物线先向上平移1个单位,再向右平移1个单位,得到抛物线y=(x﹣1﹣1)1﹣4+1=(x﹣1)1﹣1,故④正确;故选:D.点睛:本题考查二次函数图象的性质,解题的关键是熟知二次函数的图象与系数之间的关系,本题属于中等题型.4、C【解析】试题解析:∵一个三角形的两个内角分别是∴第三个内角为又∵另一个三角形的两个内角分别是∴这两个三角形有两个内角相等,∴这两个三角形相似.故选C.点睛:两组角对应相等,两三角形相似.5、B【分析】根据相似三角形的性质,由,即可得到AE的长.【详解】解:∵△ABC∽△ADE,∴,∵AB=6,AC=4,AD=3,∴,∴;故选择:B.【点睛】本题考查了相似三角形的性质,解题的关键是熟练掌握相似三角形的性质.6、C【解析】试题分析:由题意画出图形,在一个平面内,不在同一条直线上的三点,与D点恰能构成一个平行四边形,符合这样条件的点D有3个.故选C.考点:平行四边形的判定7、C【解析】能够凑成完全平方公式,则2xy前可是“-”,也可以是“+”,但y2前面的符号一定是:“+”,此题总共有(-,-)、(+,+)、(+,-)、(-,+)四种情况,能构成完全平方公式的有2种,所以概率为:.故答案为C点睛:让填上“+”或“-”后成为完全平方公式的情况数除以总情况数即为所求的概率.此题考查完全平方公式与概率的综合应用,注意完全平方公式的形式.用到的知识点为:概率=所求情况数与总情况数之比.8、B【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,是中心对称图形,故此选项正确;C、是轴对称图形,不是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项错误;故选:B.【点睛】本题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.9、A【解析】∵在△ABC中,∠C=90°,AB=3,BC=1,∴sinA=.故选A.10、B【分析】根据圆周角定理解答即可.【详解】解,∵∠BOD=44°,∴∠C=∠BOD=22°,故选:B.【点睛】本题考查了圆周角定理,属于基本题型,熟练掌握圆周角定理是关键.11、D【解析】∵在△ABC中,点D、E分别是AB、AC的中点,∴DE∥BC,DE=BC,∴△ADE∽△ABC,,∴.由此可知:A、B、C三个选项中的结论正确,D选项中结论错误.故选D.12、A【分析】本题利用弧的度数等于所对的圆周角度数的2倍求解优弧度数,继而求解劣弧度数,最后根据弧的度数等于圆心角的度数求解本题.【详解】如下图所示:∵∠BDC=120°,∴优弧的度数为240°,∴劣弧度数为120°.∵劣弧所对的圆心角为∠BOC,∴∠BOC=120°.故选:A.【点睛】本题考查圆的相关概念,解题关键在于清楚圆心角、圆周角、弧各个概念之间的关系.二、填空题(每题4分,共24分)13、y=﹣+1【分析】直接根据平移规律作答即可.【详解】解:抛物线y=﹣x2向上平移1个单位长度得到抛物线的解析式为y=﹣x2+1,故答案为:y=﹣x2+1.【点睛】本题考查了函数图像的平移.要求熟练掌握平移的规律:左加右减,上加下减,并用规律求解析式.14、1【解析】连接OA,设CD为x,由于C点为弧AB的中点,CD⊥AB,根据垂径定理的推理和垂径定理得到CD必过圆心0,即点O、D、C共线,AD=BD=AB=40,在Rt△OAD中,利用勾股定理得(50-x)2+402=502,然后解方程即可.【详解】解:连接OA、如图,设⊙O的半径为R,

∵CD为水深,即C点为弧AB的中点,CD⊥AB,∴CD必过圆心O,即点O、D、C共线,AD=BD=AB=40,

在Rt△OAD中,OA=50,OD=50-x,AD=40,

∵OD2+AD2=OA2,

∴(50-x)2+402=502,解得x=1,

即水深CD约为为1.

故答案为;1【点睛】本题考查了垂径定理的应用:从实际问题中抽象出几何图形,然后垂径定理和勾股定理相结合,构造直角三角形,可解决计算弦长、半径、弦心距等问题.15、【分析】设,分别表示出a,b,c,即可求出的值.【详解】设∴∴故答案为【点睛】本题考查了比例的性质,利用参数分别把a,b,c表示出来是解题的关键.16、y=-5(x+2)2-1【分析】根据向左平移横坐标减,向下平移纵坐标减求出新抛物线的顶点坐标,再利用顶点式解析式写出即可.【详解】解:∵抛物线y=-5x2先向左平移2个单位长度,再向下平移1个单位长度,

∴新抛物线顶点坐标为(-2,-1),

∴所得到的新的抛物线的解析式为y=-5(x+2)2-1.

故答案为:y=-5(x+2)2-1.【点睛】本题考查了二次函数图象与几何变换,掌握平移的规律:左加右减,上加下减是关键.17、4【分析】勾股定理求AC的长,中位线证明EF=EC,DE=2.5即可解题.【详解】解:在中,,,∴AC=13(勾股定理),∵点、分别是、的中点,∴DE=2.5(中位线),DE∥BC,∵是的平分线,∴∠ECF=∠BCF=∠EFC,∴EF=EC=6.5,∴DF=6.5-2.5=4.【点睛】本题考查了三角形的中位线,等角对等边,勾股定理,中等难度,证明EF=EC是解题关键.18、y=(x+2)2-1【分析】根据左加右减,上加下减的变化规律运算即可.【详解】解:按照“左加右减,上加下减”的规律,向左平移2个单位,将抛物线y=x2先变为y=(x+2)2,再沿y轴方向向下平移1个单位抛物线y=(x+2)2即变为:y=(x+2)2−1,故答案为:y=(x+2)2−1.【点睛】本题考查了抛物线的平移,掌握平移规律是解题关键.三、解答题(共78分)19、,【分析】本题考查了分式的化简求值,先把括号内通分化简,再把除法转化为乘法,约分化简,最后根据特殊角的三角函数值求出a的值,代入计算.【详解】解:原式=÷==,当a=2cos30°+tan45°=2×+1=+1时,原式=.20、(1)详见解析;(2)图详见解析,12;(3).【分析】(1)如图1,延长EG交DC的延长线于点H,由“AAS”可证△CGH≌△BGE,可得GE=GH,由直角三角形的性质可得DG=EG=GH;

(2)通过证明△DEO∽△DBO,可得,可求DE=,由平行线分线段成比例可求EG=,GO=EG-EO=,由勾股定理可求BG=CG=,可得DE=AD,即点A与点E重合,可画出图形,由面积公式可求解;

(3)如图3,过点O作OF⊥BC,由旋转的性质和等腰三角形的性质可得GF=G'F,由平行线分线段成比例可求GF的长,由勾股定理可求解.【详解】证明:(1)如图1,延长EG交DC的延长线于点H,∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,AB=CD,AB∥CD,∵AB∥CD,∴∠H=GEB,又∵BG=CG,∠BGE=∠CGH,∴△CGH≌△BGE(AAS),∴GE=GH,∵DE⊥AB,DC∥AB,∴DC⊥DE,∴DG=EG=GH;(2)如图1:∵DB⊥EG,∴∠DOE=∠DEB=90°,且∠EDB=∠EDO,∴△DEO∽△DBO,∴,∴DE×DE=4×(2+4)=24,∴DE=∴EO=,∵AB∥CD,∴,∴HO=2EO=,∴EH=,且EG=GH,∴EG=,GO=EG﹣EO=,∴GB=,∴BC==AD,∴AD=DE,∴点E与点A重合,如图2:∵S四边形ABCD=2S△ABD,∴S四边形ABCD=2××BD×AO=6×2=12;(3)如图3,过点O作OF⊥BC,∵旋转△GDO,得到△G′D'O,∴OG=OG',且OF⊥BC,∴GF=G'F,∵OF∥AB,∴,∴GF=BG=,∴GG'=2GF=,∴BG'=BG﹣GG'=,∵AB2=AO2+BO2=12,∵EG'=AG'=.【点睛】本题是四边形综合题,考查了平行四边形的性质,矩形的性质,旋转的性质,全等三角形的判定和性质,相似三角形的判定和性质等知识,添加恰当辅助线是本题的关键.21、(1)一次函数的解析式为,反比例函数的解析式为;(2)的面积为;(3)存在,点的坐标为(-3,-6),(1,-2)(3,6).【分析】(1)根据反比例函数图象上点的坐标特征可求出k2和n的值,可得反比例函数解析式,再利用待定系数法即可求出一次函数的解析式;(2)设一次函数与轴交于点,过点、分别向轴作垂线,垂足为点、,令x=0,可求出点C的坐标,根据即可得答案;(3)分OA、OB、AB为对角线三种情况,根据A、B坐标可得直线OA、OB的解析式,根据互相平行的两条直线斜率相同可知直线OP、AP、BP的斜率,利用待定系数法可求出其解析式,进而联立解析式求出交点坐标即可得答案.【详解】(1)∵点,在反比例函数上,∴,,∴,,∴,,∵点,在一次函数上,∴,,∴,,∴,∴一次函数的解析式为,反比例函数的解析式为.(2)如图,设一次函数与y轴交于点,过点、分别向轴作垂线,垂足为点、,∵当时,,∴点的坐标为,∵,,∴,,∴,即的面积为.(3)∵点A(2,2),B(-1,-4),∴直线OA的解析式为y=x,直线OB的解析式为y=4x,直线AB的解析式为y=2x-2,①如图,当OA//PB,OP//AB时,∴直线OP的解析式为y=2x+b1,设直线PB的解析式为y=x+b1,∵点B(-1,-4)在直线上,∴-4=-1+b1,解得:b1=-3,∴直线PB的解析式为y=x-3,联立直线OP、BP解析式得:,解得:,∴点P坐标为(-3,-6),②如图,当OB//AP,OA//BP时,同①可得BP解析式为y=x-3,设AP的解析式为y=4x+b2,∵点A(2,2)在直线AP上,∴2=2×4+b2,解得:b2=-6,∴直线AP的解析式为y=4x-6,联立PB和AP解析式得:,解得:,∴点P坐标为(1,-2),③如图,当OP//AB,OB//AP时,同①②可得:直线OP的解析式为y=2x,直线AP的解析式为y=4x-6,联立直线OP和AP解析式得:,解得:,∴点P坐标为(3,6),综上所述:存在点P,使以P、A、O、B为顶点的四边形是平行四边形,点的坐标为(-3,-6),(1,-2)(3,6).【点睛】此题考查了一次函数与反比例函数的交点问题,涉及的知识有:待定系数法确定函数解析式,一次函数与x轴的交点,坐标与图形性质,以及三角形的面积求法,熟练掌握待定系数法是解本题的关键.22、(1),E(2,1),F(-1,-2);(2).【分析】(1)先得到点D的坐标,再求出k的值即可确定反比例函数解析式;(2)过点F作FG⊥AB,与BA的延长线交于点G.由E、F两点的坐标,得到AE=1,FG=2-(-1)=3,从而得到△AEF的面积.【详解】解:(1)∵正方形OABC的边长为2,∴点D的纵坐标为2,即y=2,将y=2代入y=2x,得到x=1,∴点D的坐标为(1,2).∵函数的图象经过点D,∴,∴k=2,∴函数的表达式为.(2)过点F作FG⊥AB,与BA的延长线交于点G.根据反比例函数图象的对称性可知:点D与点F关于原点O对称∴点F的坐标分别为(-1,-2),把x=2代入得,y=1;∴点E的坐标(2,1);∴AE=1,FG=2-(-1)=3,∴△AEF的面积为:AE•FG=.23、(1)必然,不可能;(2);(3)此游戏不公平.【解析】(1)直接利用必然事件以及怒不可能事件的定义分别分析得出答案;(2)直接利用概率公式求出答案;(3)首先画出树状图,进而利用概率公式求出答案.【详解】(1)“从中任意抽取1个球不是红球就是白球”是必然事件,“从中任意抽取1个球是黑球

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论