版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.已知锐角∠AOB如图,(1)在射线OA上取一点C,以点O为圆心,OC长为半径作,交射线OB于点D,连接CD;(2)分别以点C,D为圆心,CD长为半径作弧,交于点M,N;(3)连接OM,MN.根据以上作图过程及所作图形,下列结论中错误的是()A.∠COM=∠COD B.若OM=MN,则∠AOB=20°C.MN∥CD D.MN=3CD2.如图,⊙O是△ABC的外接圆,∠B=60°,OP⊥AC于点P,OP=2,则⊙O的半径为().A.4 B.6 C.8 D.123.一个不透明的袋子中装有仅颜色不同的1个红球和3个绿球,从袋子中随机摸出一个小球,记下颜色后,不放回再随机摸出一个小球,则两次摸出的小球恰好是一个红球和一个绿球的概率为()A. B. C. D.4.若正比例函数y=mx(m≠0),y随x的增大而减小,则它和二次函数y=mx2+m的图象大致是()A. B. C. D.5.如图,直线l和双曲线y=(k>0)交于A、B两点,P是线段AB上的点(不与A、B重合),过点A、B、P分别向x轴作垂线,垂足分别为C、D、E,连接OA、OB、OP,设△AOC的面积为S1、△BOD的面积为S2、△POE的面积为S3,则()A.S1<S2<S3 B.S1>S2>S3 C.S1=S2>S3 D.S1=S2<S36.如图,在平面直角坐标系中,⊙P的圆心坐标是(-3,a)(a>3),半径为3,函数y=-x的图像被⊙P截得的弦AB的长为,则a的值是()A.4 B. C. D.7.我们知道:过直线外一点有且只有一条直线和已知直线垂直,如图,已知直线l和l外一点A,用直尺和圆规作图作直线AB,使AB⊥l于点A.下列四个作图中,作法错误的是()A. B.C. D.8.若一组数据为3,5,4,5,6,则这组数据的众数是()A.3 B.4 C.5 D.69.在平面直角坐标系中,把抛物线y=2x2绕原点旋转180°,再向右平移1个单位,向下平移2个单位,所得的抛物线的函数表达式为()A.y=2(x﹣1)2﹣2 B.y=2(x+1)2﹣2C.y=﹣2(x﹣1)2﹣2 D.y=﹣2(x+1)2﹣210.如图,△ABC中,点D是AB的中点,点E是AC边上的动点,若△ADE与△ABC相似,则下列结论一定成立的是()A.E为AC的中点 B.DE是中位线或AD·AC=AE·ABC.∠ADE=∠C D.DE∥BC或∠BDE+∠C=180°二、填空题(每小题3分,共24分)11.已知一元二次方程的两根为、,则__.12.若两个相似三角形的周长比是,则对应中线的比是________.13.如图,在正方形铁皮上剪下一个扇形和一个半径为的圆形,使之恰好围成一个圆锥,则圆锥的高为____.14.如图,在平行四边形ABCD中,AE:BE=2:1,F是AD的中点,射线EF与AC交于点G,与CD的延长线交于点P,则的值为_____.15.若一三角形的三边长分别为5、12、13,则此三角形的内切圆半径为______.16.如图,AB是⊙O的直径,BC是⊙O的弦.若∠OBC=60°,则∠BAC=__.17.在等腰△ABC中,AB=AC=4,BC=6,那么cosB的值=_____.18.如图,在平面直角坐标系中,Rt△ABO的顶点O与原点重合,顶点B在x轴上,∠ABO=90°,OA与反比例函数y=的图象交于点D,且OD=2AD,过点D作x轴的垂线交x轴于点C.若S四边形ABCD=10,则k的值为.三、解答题(共66分)19.(10分)一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4.随机摸取一个小球然后放回,再随机摸出一个小球,求下列事件的概率:(1)两次取出的小球标号相同;(2)两次取出的小球标号的和等于4.20.(6分)解方程:x(x-2)+x-2=1.21.(6分)(1)解方程(2)计算:22.(8分)如图所示,在平面直角坐标系中,过点A(﹣,0)的两条直线分别交y轴于B、C两点,且B、C两点的纵坐标分别是一元二次方程x2﹣2x﹣3=0的两个根.(1)求线段BC的长度;(2)试问:直线AC与直线AB是否垂直?请说明理由;(3)若点D在直线AC上,且DB=DC,求点D的坐标.23.(8分)如图,抛物线y=ax2+bx﹣经过点A(1,0)和点B(5,0),与y轴交于点C.(1)求此抛物线的解析式;(2)以点A为圆心,作与直线BC相切的⊙A,求⊙A的半径;(3)在直线BC上方的抛物线上任取一点P,连接PB,PC,请问:△PBC的面积是否存在最大值?若存在,求出这个最大值的此时点P的坐标;若不存在,请说明理由.24.(8分)如图,AB为⊙O的直径,C为⊙O上一点,AD和过C点的直线互相垂直,垂足为D,且AC平分∠DAB.(1)求证:DC为⊙O的切线;(2)若∠DAB=60°,⊙O的半径为3,求线段CD的长.25.(10分)解方程:(1)2x2-4x-31=1;(2)x2-2x-4=1.26.(10分)如图,直线和反比例函数的图象都经过点,点在反比例函数的图象上,连接.(1)求直线和反比例函数的解析式;(2)直线经过点吗?请说明理由;(3)当直线与反比例数图象的交点在两点之间.且将分成的两个三角形面积之比为时,请直接写出的值.
参考答案一、选择题(每小题3分,共30分)1、D【分析】由作图知CM=CD=DN,再利用圆周角定理、圆心角定理逐一判断可得.【详解】解:由作图知CM=CD=DN,
∴∠COM=∠COD,故A选项正确;
∵OM=ON=MN,
∴△OMN是等边三角形,
∴∠MON=60°,
∵CM=CD=DN,∴∠MOA=∠AOB=∠BON=∠MON=20°,故B选项正确;∵∠MOA=∠AOB=∠BON,
∴∠OCD=∠OCM=,
∴∠MCD=,
又∠CMN=∠AON=∠COD,∴∠MCD+∠CMN=180°,
∴MN∥CD,故C选项正确;
∵MC+CD+DN>MN,且CM=CD=DN,
∴3CD>MN,故D选项错误;
故选D.【点睛】本题主要考查作图-复杂作图,解题的关键是掌握圆心角定理和圆周角定理等知识点.2、A【解析】∵圆心角∠AOC与圆周角∠B所对的弧都为,且∠B=60°,∴∠AOC=2∠B=120°(在同圆或等圆中,同弧所对圆周角是圆心角的一半).又OA=OC,∴∠OAC=∠OCA=30°(等边对等角和三角形内角和定理).∵OP⊥AC,∴∠AOP=90°(垂直定义).在Rt△AOP中,OP=2,∠OAC=30°,∴OA=2OP=4(直角三角形中,30度角所对的边是斜边的一半).∴⊙O的半径4.故选A.3、A【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的小球恰好是一个红球和一个绿球的情况,再利用概率公式即可求得答案.【详解】画树状图为:共有12种等可能的结果数,其中两次摸出的小球恰好是一个红球和一个绿球的结果数为6,所以两次摸出的小球恰好是一个红球和一个绿球的概率==.故选A.【点睛】此题考查列表法与树状图法,解题关键在于根据题意画出树状图.4、A【详解】∵正比例函数y=mx(m≠0),y随x的增大而减小,∴该正比例函数图象经过第一、三象限,且m<0,∴二次函数y=mx2+m的图象开口方向向下,且与y轴交于负半轴,综上所述,符合题意的只有A选项,故选A.5、D【分析】根据双曲线的解析式可得所以在双曲线上的点和原点形成的三角形面积相等,因此可得S1=S2,设OP与双曲线的交点为P1,过P1作x轴的垂线,垂足为M,则可得△OP1M的面积等于S1和S2,因此可比较的他们的面积大小.【详解】根据双曲线的解析式可得所以可得S1=S2=设OP与双曲线的交点为P1,过P1作x轴的垂线,垂足为M因此而图象可得所以S1=S2<S3故选D【点睛】本题主要考查双曲线的意义,关键在于,它代表的就是双曲线下方的矩形的面积.6、B【分析】如图所示过点P作PC⊥x轴于C,交AB于D,作PE⊥AB于E,连结PB,可得OC=3,PC=a,把x=-3代入y=-x得y=3,可确定D点坐标,可得△OCD为等腰直角三角形,得到△PED也为等腰直角三角形,又PE⊥AB,由垂径定理可得AE=BE=AB=2,在Rt△PBE中,由勾股定理可得PE=,可得PD=PE=,最终求出a的值.【详解】作PC⊥x轴于C,交AB于D,作PE⊥AB于E,连结PB,如图,∵⊙P的圆心坐标是(-3,a),∴OC=3,PC=a,把x=-3代入y=-x得y=3,∴D点坐标为(-3,3),∴CD=3,∴△OCD为等腰直角三角形,∴△PED也为等腰直角三角形,∵PE⊥AB,∴AE=BE=AB=×4=2,在Rt△PBE中,PB=3,∴PE=,∴PD=PE=,∴a=3+.故选B.【点睛】本题主要考查了垂径定理、一次函数图象上点的坐标特征以及勾股定理,熟练掌握圆中基本定理和基础图形是解题的关键.7、C【分析】根据垂线的作法即可判断.【详解】观察作图过程可知:A.作法正确,不符合题意;B.作法正确,不符合题意;C.作法错误,符号题意;D.作法正确,不符合题意.故选:C.【点睛】本题考查了作图-复杂作图、垂线,解决本题的关键是掌握作垂线的方法.8、C【分析】根据众数的定义即可求解.【详解】一组数据为3,5,4,5,6中,5出现的次数最多,∴这组数据的众数为5;
故选:C.【点睛】本题考查了众数的概念,众数是一组数据中出现次数最多的数,注意一组数据的众数可能不只一个.9、C【分析】抛物线y=1x1绕原点旋转180°,即抛物线上的点(x,y)变为(-x,-y),代入可得抛物线方程,然后根据左加右减的规律即可得出结论.【详解】解:∵把抛物线y=1x1绕原点旋转180°,∴新抛物线解析式为:y=﹣1x1,∵再向右平移1个单位,向下平移1个单位,∴平移后抛物线的解析式为y=﹣1(x﹣1)1﹣1.故选:C.【点睛】本题考查了抛物线的平移变换规律,旋转变换规律,掌握抛物线的平移和旋转变换规律是解题的关键.10、D【分析】如图,分两种情况分析:由△ADE与△ABC相似,得,∠ADE=∠B或∠ADE=∠C,故DE∥BC或∠BDE+∠C=180°.【详解】因为,△ADE与△ABC相似,所以,∠ADE=∠B或∠ADE=∠C所以,DE∥BC或∠BDE+∠C=∠BDE+∠ADE=180°故选D【点睛】本题考核知识点:相似性质.解题关键点:理解相似三角形性质.二、填空题(每小题3分,共24分)11、1【分析】根据根与系数的关系得到x1+x2=-3,x1x2=-4,再利用完全平方公式变形得到x12+x1x2+x22=(x1+x2)2-x1x2,然后利用整体代入的方法计算.【详解】根据题意得x1+x2=-3,x1x2=-4,
所以x12+x1x2+x22=(x1+x2)2-x1x2=(-3)2-(-4)=1.
故答案为1.【点睛】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=-,x1x2=.12、4:9【分析】相似三角形的面积之比等于相似比的平方.【详解】解:两个相似三角形的周长比是,∴两个相似三角形的相似比是,∴两个相似三角形对应中线的比是,故答案为.13、【分析】利用已知得出底面圆的半径为,周长为,进而得出母线长,再利用勾股定理进行计算即可得出答案.【详解】解:∵半径为的圆形∴底面圆的半径为∴底面圆的周长为∴扇形的弧长为∴,即圆锥的母线长为∴圆锥的高为.故答案是:【点睛】此题主要考查了圆锥展开图与原图对应情况,以及勾股定理等知识,根据已知得出母线长是解决问题的关键.14、【分析】设则,根据是平行四边形,可得,即,和,可得,由于是的中点,可得,因此,,,再通过便可得出.【详解】解:∵∴设,,则∵是平行四边形∴,∴,,∴∴又∵是的中点∴∴∴∴∴故答案为:【点睛】本题主要考查了平行四边形的性质,全等三角形的判定和性质,相似三角形的判定和性质,求证两个三角形相似,再通过比值等量代换表示出边的数量关系是解题的关键.15、1.【解析】∵,由勾股定理逆定理可知此三角形为直角三角形,∴它的内切圆半径,16、30°【分析】根据AB是⊙O的直径可得出∠ACB=90°,再根据三角形内角和为180°以及∠OBC=60°,即可求出∠BAC的度数.【详解】∵AB是⊙O的直径,
∴∠ACB=90°,
又∵∠OBC=60°,
∴∠BAC=180°-∠ACB-∠ABC=30°.
故答案为:30°.【点睛】本题考查了圆周角定理以及角的计算,解题的关键是找出∠ACB=90°.本题属于基础题,难度不大,解决该题型题目时,找出直径所对的圆周角为90°是关键.17、3【解析】作AD⊥BC于D点,根据等腰三角形的性质得到BD=12BC【详解】解:如图,作AD⊥BC于D点,∵AB=AC=4,BC=6,∴BD=12BC在Rt△ABD中,cosB=BDAB=3故答案为34【点睛】本题考查了锐角三角函数的定义:在直角三角形中,一锐角的余弦值等于这个角的邻边与斜边的比.也考查了等腰三角形的性质.18、﹣1【详解】∵OD=2AD,∴,∵∠ABO=90°,DC⊥OB,∴AB∥DC,∴△DCO∽△ABO,∴,∴,∵S四边形ABCD=10,∴S△ODC=8,∴OC×CD=8,OC×CD=1,∴k=﹣1,故答案为﹣1.三、解答题(共66分)19、(1)(2)【解析】试题分析:首先根据题意进行列表,然后求出各事件的概率.试题解析:(1)P(两次取得小球的标号相同)=;(2)P(两次取得小球的标号的和等于4)=.考点:概率的计算.20、.【分析】把方程中的x-2看作一个整体,利用因式分解法解此方程.【详解】解:(x-2)(x+2)=2,∴x-2=2或x+2=2,∴x2=2,x2=-2.21、(1),;(2)【分析】(1)利用配方法解一元二次方程即可得出答案;(2)先将sin45°和tan60°的值代入,再计算即可得出答案.【详解】解:(1)方程整理得:,配方得:,即,开方得:,解得:,;(2)原式.【点睛】本题考查的是解一元二次方程和三角函数值,比较简单,需要牢记特殊三角函数值.22、(1)线段BC的长度为4;(2)AC⊥AB,理由见解析;(3)点D的坐标为(﹣2,1)【解析】(1))解出方程后,即可求出B、C两点的坐标,即可求出BC的长度;
(2)由A、B、C三点坐标可知OA2=OC•OB,所以可证明△AOC∽△BOA,利用对应角相等即可求出∠CAB=90°;
(3)容易求得直线AC的解析式,由DB=DC可知,点D在BC的垂直平分线上,所以D的纵坐标为1,将其代入直线AC的解析式即可求出D的坐标;【详解】解:(1)∵x2﹣2x﹣3=0,∴x=3或x=﹣1,∴B(0,3),C(0,﹣1),∴BC=4,(2)∵A(﹣,0),B(0,3),C(0,﹣1),∴OA=,OB=3,OC=1,∴OA2=OB•OC,∵∠AOC=∠BOA=90°,∴△AOC∽△BOA,∴∠CAO=∠ABO,∴∠CAO+∠BAO=∠ABO+∠BAO=90°,∴∠BAC=90°,∴AC⊥AB;(3)设直线AC的解析式为y=kx+b,把A(﹣,0)和C(0,﹣1)代入y=kx+b,∴,解得:,∴直线AC的解析式为:y=﹣x﹣1,∵DB=DC,∴点D在线段BC的垂直平分线上,∴D的纵坐标为1,∴把y=1代入y=﹣x﹣1,∴x=﹣2,∴D的坐标为(﹣2,1),【点睛】本题考查二次函数的综合问题,涉及一元二次方程的解法,相似三角形的判定,等腰三角形的性质,垂直平分线的判定等知识,内容较为综合,需要学生灵活运用所知识解决.23、(1)y=﹣+2x﹣;(2);(3)存在最大值,此时P点坐标(,).【分析】(1)将A、B两点坐标分别代入抛物线解析式,可求得待定系数a和b,即可确定抛物线解析式;(2)因为圆的切线垂直于过切点的半径,所以过A作AD⊥BC于点D,则AD为⊙A的半径,由条件可证明△ABD∽△CBO,根据抛物线解析式求出C点坐标,根据勾股定理求出BC的长,再求出AB的长,利用相似三角形的性质即两个三角形相似,对应线段成比例,可求得AD的长,即为⊙A的半径;(3)先由B,C点坐标求出直线BC解析式,然后过P作PQ∥y轴,交直线BC于点Q,交x轴于点E,因为P在抛物线上,P,Q点横坐标相同,所以可设出P、Q点的坐标,并把PQ的长度表示出来,进而表示出△PQC和△PQB的面积,两者相加就是△PBC的面积,再利用二次函数的性质讨论其最大值,容易求得P点坐标.【详解】解:(1)∵抛物线y=ax2+bx﹣经过点A(1,0)和点B(5,0),∴把A、B两点坐标代入可得:,解得:,∴抛物线解析式为y=﹣+2x﹣;(2)过A作AD⊥BC于点D,如图1:因为圆的切线垂直于过切点的半径,所以AD为⊙A的半径,由(1)可知C(0,﹣),且A(1,0),B(5,0),∴OB=5,AB=OB﹣OA=4,OC=,在Rt△OBC中,由勾股定理可得:BC===,∵∠ADB=∠BOC=90°,∠ABD=∠CBO,∴△ABD∽△CBO,∴,即,解得AD=,即⊙A的半径为;(3)∵C(0,﹣),∴设直线BC解析式为y=kx﹣,把B点坐标(5,0)代入可求得k=,∴直线BC的解析式为y=x﹣,过P作PQ∥y轴,交直线BC于点Q,交x轴于点E,如图2,因为P在抛物线上,Q在直线BC上,P,Q两点横坐标相同,所以设P(x,﹣+2x﹣),则Q(x,x﹣),∴PQ=(﹣+2x﹣)﹣(x﹣)=﹣+x=﹣+,∴S△PBC=S△PCQ+S△PBQ=PQ•OE+PQ•BE=PQ(OE+BE)=PQ•OB=PQ=×[﹣+]=,∵<0,∴当x=时,S△PBC有最大值,把x=代入﹣+2x﹣,求出P点纵坐标为,∴△PBC的面积存在最大值,此时P点坐标(,).【点睛】本题考查1.二次函数的综合应用;2.切线的性质;3.相似三角形的判定和性质;4.用待定系数法确定解析式,综合性较强,利用数形结合思想解题是关键.24、(1)证明见解析;(2).【分析】(1)连接OC,由OA=OC可以得到∠OAC=∠OCA,然后利用角平分线的性质可以证明∠DAC=∠OCA,接着利用平行线的判定即可得到OC∥AD,然后就得到OC⊥CD,由此即可证明直线CD与⊙O相切于C点;(2)连接BC,∠BAC=30°,在Rt△ABC中可求得AC,同理在Rt△ACD中求得CD.【详解】(1)证明:连接CO,∵AO=CO,∴∠OAC=∠OCA,∵AC平分∠DAB,∴∠OAC=∠DAC,∴∠DAC=∠OCA,∴CO∥AD,∴CO⊥CD,∴DC为⊙O的切线;(2)解:连接BC,∵AB为⊙O的直径,∴∠ACB=90°,∵∠DAB=60°,AC平分∠DAB,∴∠BAC=∠DAB=30°,∵⊙O的半径为3,∴AB=6,∴AC=AB=3.∵∠CAD=30°∴【点睛】此题主要考查了切线的性质与判定,解题时首先利用切线的判定证明切线,然后利用含特殊角度的直角三角形求得边长即可解决问题.25、(1)x1=-3,x2=5;(2)x1=,x2=【分析】(1)利用等式的性质将方程化简,再利用因式分解法解得即可;(2)利用公式法求解即可.【详解】解:(1)方程变形为:x2-2x-15=1,即(x+3)(x-5)=1,解得:x1=-3,x2=5;(2)由方程可得:a=1,b=-2,c=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 汽车配件订购协议
- 疫情防治药品紧急采购协议
- 婚庆策划合作细则
- 用功学习保证书
- 房屋买卖意向书签订注意事项详解
- 采购代表合同样式
- 生态休闲农业项目规划案
- 外墙裂纹修补涂料样本
- 标准贷款合同格式
- 铝合金建筑材料购销协议
- 2024年《档案工作实务》考试复习题库400题(含答案)
- 2025年1月“八省联考”考前猜想卷历史试题01 含解析
- 眼科练习卷含答案
- 山东省淄博市2023-2024学年高二上学期期末教学质量检测试题 数学 含解析
- 专题23 殖民地人民的反抗与资本主义制度的扩展(练习)
- 2024至2030年中国无甲醛多层板数据监测研究报告
- 算法设计与分析 课件 5.4.1-动态规划-0-1背包问题-问题描述和分析
- 分子生物学课件第一章医学分子生物学绪论
- 电工技能与实训(第4版)教学指南 高教版
- 转化学困生工作总结课件
- 新高考数学专题复习专题42圆锥曲线中的向量问题专题练习(学生版+解析)
评论
0/150
提交评论