2022-2023学年山东省邹城八中学九年级数学第一学期期末统考试题含解析_第1页
2022-2023学年山东省邹城八中学九年级数学第一学期期末统考试题含解析_第2页
2022-2023学年山东省邹城八中学九年级数学第一学期期末统考试题含解析_第3页
2022-2023学年山东省邹城八中学九年级数学第一学期期末统考试题含解析_第4页
2022-2023学年山东省邹城八中学九年级数学第一学期期末统考试题含解析_第5页
免费预览已结束,剩余15页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.关于的分式方程的解为非负整数,且一次函数的图象不经过第三象限,则满足条件的所有整数的和为()A. B. C. D.2.某农机厂四月份生产零件50万个,第二季度共生产零件182万个.设该厂第二季度平均每月的增长率为,那么满足的方程是()A. B.C. D.3.一元二次方程x2=9的根是()A.3 B.±3 C.9 D.±94.若圆锥的底面半径为2,母线长为5,则圆锥的侧面积为()A.5 B.10 C.20 D.405.如图,在△ABC中,AC⊥BC,∠ABC=30°,点D是CB延长线上的一点,且AB=BD,则tanD的值为()A. B. C. D.6.下列几何图形中,是中心对称图形但不是轴对称图形的是()A.圆 B.正方形 C.矩形 D.平行四边形7.已知一个圆锥的母线长为30cm,侧面积为300πcm,则这个圆锥的底面半径为()A.5cm B.10cm C.15cm D.20cm8.比较cos10°、cos20°、cos30°、cos40°大小,其中值最大的是()A.cos10° B.cos20° C.cos30° D.cos40°9.反比例函数y=的图象经过点(3,﹣2),下列各点在图象上的是()A.(﹣3,﹣2) B.(3,2) C.(﹣2,﹣3) D.(﹣2,3)10.如图,在平面直角坐标系中,正方形ABCD顶点B(﹣1,﹣1),C在x轴正半轴上,A在第二象限双曲线y=﹣上,过D作DE∥x轴交双曲线于E,连接CE,则△CDE的面积为()A.3 B. C.4 D.11.如图,的顶点均在上,若,则的度数为()A. B. C. D.12.方程的解是()A. B., C., D.二、填空题(每题4分,共24分)13.已知△ABC与△DEF相似,且△ABC与△DEF的相似比为2:3,若△DEF的面积为36,则△ABC的面积等于________.14.如图,在△ABC中,∠C=90°,AC=3,若cosA=,则BC的长为________.15.如图,是的直径,弦交于点,,,,则的长为_____.16.如图,在平面直角坐标系中,已知经过原点,与轴、轴分别交于、两点,点坐标为,与交于点,则圆中阴影部分的面积为________.17.在比例尺为1:40000的地图上,某条道路的长为7cm,则该道路的实际长度是_____km.18.二次函数的最大值是________.三、解答题(共78分)19.(8分)如图,四边形ABCD是矩形,AB=6,BC=4,点E在边AB上(不与点A、B重合),过点D作DF⊥DE,交边BC的延长线于点F.(1)求证:△DAE∽△DCF.(2)设线段AE的长为x,线段BF的长为y,求y与x之间的函数关系式.(3)当四边形EBFD为轴对称图形时,则cos∠AED的值为.20.(8分)某无人机兴趣小组在操场上开展活动(如图),此时无人机在离地面30米的D处,无人机测得操控者A的俯角为37°,测得点C处的俯角为45°.又经过人工测量操控者A和教学楼BC距离为57米,求教学楼BC的高度.(注:点A,B,C,D都在同一平面上.参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)21.(8分)某运动会期间,甲、乙、丙三位同学参加乒乓球单打比赛,用抽签的方式确定第一场比赛的人选.(1)若已确定甲参加第一次比赛,求另一位选手恰好是乙同学的概率;(2)用画树状图或列表的方法,写出参加第一场比赛选手的所有可能,并求选中乙、丙两位同学参加第一场比赛的概率.22.(10分)为了丰富校园文化生活,提高学生的综合素质,促进中学生全面发展,学校开展了多种社团活动.小明喜欢的社团有:合唱社团、足球社团、书法社团、科技社团(分别用字母A,B,C,D依次表示这四个社团),并把这四个字母分别写在四张完全相同的不透明的卡片的正面上,然后将这四张卡片背面朝上洗匀后放在桌面上.(1)小明从中随机抽取一张卡片是足球社团B的概率是.(2)小明先从中随机抽取一张卡片,记录下卡片上的字母后不放回,再从剩余的卡片中随机抽取一张卡片,记录下卡片上的字母.请你用列表法或画树状图法求出小明两次抽取的卡片中有一张是科技社团D的概率.23.(10分)如图,已知△ABC与△A′B′C′关于点O成中心对称,点A的对称点为点A′,请你用尺规作图的方法,找出对称中心O,并作出△A′B′C′.(要求:尺规作图,保留作图痕迹,不写作法).24.(10分)如图,AB是⊙O的直径,CD是⊙O的弦,且CD⊥AB于点E.(1)求证:∠BCO=∠D;(2)若,AE=1,求劣弧BD的长.25.(12分)如图,某中学一幢教学楼的顶部竖有一块写有“校训”的宣传牌,米,王老师用测倾器在点测得点的仰角为,再向教学楼前进9米到达点,测得点的仰角为,若测倾器的高度米,不考虑其它因素,求教学楼的高度.(结果保留根号)26.如图,在直角坐标系中,抛物线y=ax2+bx-2与x轴交于点A(-3,0)、B(1,0),与y轴交于点C.(1)求抛物线的函数表达式.(2)在抛物线上是否存在点D,使得△ABD的面积等于△ABC的面积的倍?若存在,求出点D的坐标;若不存在,请说明理由.(3)若点E是以点C为圆心且1为半径的圆上的动点,点F是AE的中点,请直接写出线段OF的最大值和最小值.

参考答案一、选择题(每题4分,共48分)1、A【分析】解分式方程可得且,再根据一次函数的图象不经过第三象限,可得,结合可得,且,再根据是整数和是非负整数求出的所有值,即可求解.【详解】经检验,不是方程的解∴∵分式方程的解为非负整数∴解得且∵一次函数的图象不经过第三象限∴解得∴,且∵是整数∴∵是非负整数故答案为:A.【点睛】本题考查了分式方程和一次函数的问题,掌握解分式方程和解不等式组的方法是解题的关键.2、B【分析】由题意根据增长后的量=增长前的量×(1+增长率),如果该厂五、六月份平均每月的增长率为x,那么可以用x分别表示五、六月份的产量,进而即可得出方程.【详解】解:设该厂五、六月份平均每月的增长率为x,那么得五、六月份的产量分别为50(1+x)、50(1+x)2,根据题意得50+50(1+x)+50(1+x)2=1.故选:B.【点睛】本题考查由实际问题抽象出一元二次方程的增长率问题,注意掌握其一般形式为a(1+x)2=b,a为起始时间的有关数量,b为终止时间的有关数量,x为增长率.3、B【解析】两边直接开平方得:,进而可得答案.【详解】解:,两边直接开平方得:,则,.故选:B.【点睛】此题主要考查了直接开平方法解一元二次方程,解这类问题一般要移项,把所含未知数的项移到等号的左边,把常数项移项等号的右边,化成的形式,利用数的开方直接求解.4、B【分析】利用圆锥面积=计算.【详解】=,故选:B.【点睛】此题考查圆锥的侧面积公式,共有三个公式计算圆锥的面积,做题时依据所给的条件恰当选择即可解答.5、D【分析】设AC=m,解直角三角形求出AB,BC,BD即可解决问题.【详解】设AC=m,在Rt△ABC中,∵∠C=90°,∠ABC=30°,∴AB=2AC=2m,BC=AC=m,∴BD=AB=2m,DC=2m+m,∴tan∠ADC===2﹣.故选:D.【点睛】本题考查解直角三角形,直角三角形30度角的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.6、D【分析】根据中心对称图形和轴对称图形的定义逐一判断即可.【详解】A.圆是中心对称图形,也是轴对称图形,故本选项不符合题意;B.正方形是中心对称图形,也是轴对称图形,故本选项不符合题意;C.矩形是中心对称图形,也是轴对称图形,故本选项不符合题意;D.平行四边形是中心对称图形,不是轴对称图形,故本选项符合题意.故选D.【点睛】此题考查的是中心对称图形和轴对称图形的识别,掌握中心对称图形和轴对称图形的定义是解决此题的关键.7、B【解析】设这个圆锥的底面半径为r,根据圆锥的侧面积公式可得π×r×30=300π,解得r=10cm,故选B.8、A【解析】根据同名三角函数大小的比较方法比较即可.【详解】∵,∴.故选:A.【点睛】本题考查了同名三角函数大小的比较方法,熟记锐角的正弦、正切值随角度的增大而增大;锐角的余弦、余切值随角度的增大而减小.9、D【解析】分析:直接利用反比例函数图象上点的坐标特点进而得出答案.详解:∵反比例函数y=的图象经过点(3,-2),∴xy=k=-6,A、(-3,-2),此时xy=-3×(-2)=6,不合题意;B、(3,2),此时xy=3×2=6,不合题意;C、(-2,-3),此时xy=-3×(-2)=6,不合题意;D、(-2,3),此时xy=-2×3=-6,符合题意;故选D.点睛:此题主要考查了反比例函数图象上点的坐标特征,正确得出k的值是解题关键.10、B【分析】作辅助线,构建全等三角形:过A作GH⊥x轴,过B作BG⊥GH,过C作CM⊥ED于M,证明△AHD≌△DMC≌△BGA,设A(x,﹣),结合点B的坐标表示:BG=AH=DM=﹣1﹣x,由HQ=CM,列方程,可得x的值,进而根据三角形面积公式可得结论.【详解】过A作GH⊥x轴,过B作BG⊥GH,过C作CM⊥ED于M,设A(x,﹣),∵四边形ABCD是正方形,∴AD=CD=AB,∠BAD=∠ADC=90°,∴∠BAG=∠ADH=∠DCM,∴△AHD≌△DMC≌△BGA(AAS),∴BG=AH=DM=﹣1﹣x,∴AG=CM=DH=1﹣,∵AH+AQ=CM,∴1﹣=﹣﹣1﹣x,解得:x=﹣2,∴A(﹣2,2),CM=AG=DH=1﹣=3,∵BG=AH=DM=﹣1﹣x=1,∴点E的纵坐标为3,把y=3代入y=﹣得:x=﹣,∴E(﹣,3),∴EH=2﹣=,∴DE=DH﹣HE=3﹣=,∴S△CDE=DE•CM=××3=.故选:B.【点睛】本题主要考查反比例函数图象和性质与几何图形的综合,掌握“一线三垂直”模型是解题的关键.11、D【分析】根据同弧所对圆心角等于圆周角的两倍,可得到∠BOC=2∠BAC,再结合已知即可得到此题的答案.【详解】∵∠BAC和∠BOC分别是所对的圆周角和圆心角,∴∠BOC=2∠BAC.∵∠BAC=35°,∴∠BOC=70°.故选D.【点睛】本题考查了圆周角定理,熟练掌握定理是解题的关键.12、B【分析】用因式分解法求解即可得到结论.【详解】∵x2﹣3x=0,∴x(x﹣3)=0,则x=0或x﹣3=0,解得:,.故选:B.【点睛】本题考查了解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解答本题的关键.二、填空题(每题4分,共24分)13、16【分析】利用相似三角形面积比等于相似比的平方求解即可.【详解】解:∵ABC与DEF相似,且ΔABC与ΔDEF的相似比为2:3,∴,∵ΔDEF的面积为36,∴∴ΔABC的面积等于16,故答案为16.【点睛】本题考查了相似三角形的性质,熟记相似三角形的面积比等于相似比的平方是解决本题的关键.14、1【分析】由题意先根据∠C=90°,AC=3,cos∠A=,得到AB的长,再根据勾股定理,即可得到BC的长.【详解】解:∵△ABC中,∠C=90°,AC=3,cos∠A=,∴,∴AB=5,∴BC==1.故此空填1.【点睛】本题考查的是锐角三角函数的定义,锐角A的邻边b与斜边c的比叫做∠A的余弦,记作cosA,以此并结合勾股定理分析求解.15、【分析】作于,连结,由,得,由,,得,进而得,根据勾股定理得,即可得到答案.【详解】作于,连结,如图,∵,∴,∵,,∴,∴,∴,∵在中,,∴,∴,∵在中,,,∴,∴.故答案为:【点睛】本题主要考查垂径定理和勾股定理的综合,添加辅助线,构造直角三角形和弦心距,是解题的关键.16、【分析】连接AB,从图中明确,然后根据公式计算即可.【详解】解:连接,∵,∴是直径,根据同弧对的圆周角相等得:,∵,∴,,即圆的半径为2,∴.故答案为:.【点睛】本题考查了同弧对的圆周角相等;90°的圆周角对的弦是直径;锐角三角函数的概念;圆、直角三角形的面积分式,解题的关键是熟练运用所学的知识进行解题.17、2.1【解析】试题分析:设这条道路的实际长度为x,则:,解得x=210000cm=2.1km,∴这条道路的实际长度为2.1km.故答案为2.1.考点:比例线段.18、1【分析】题目所给形式是二次函数的顶点式,易知其顶点坐标是(5,1),也就是当x=5时,函数有最大值1.【详解】解:∵,∴此函数的顶点坐标是(5,1).即当x=5时,函数有最大值1.故答案是:1.【点睛】本题考查了二次函数的最值,解题关键是掌握二次函数顶点式,并会根据顶点式求最值.三、解答题(共78分)19、(1)见解析;(2)y=x+4;(3).【分析】(1)根据矩形的性质和余角的性质得到∠A=∠ADC=∠DCB=90°,∠ADE=∠CDF,最后运用相似三角形的判定定理证明即可;(2)运用相似三角形的性质解答即可;(3)根据轴对称图形的性质可得DE=BE,再运用勾股定理可求出AE,DE的长,最后用余弦的定义解答即可.【详解】(1)证明∵四边形ABCD是矩形,∴AD∥BC,∠A=∠BCD=∠ADC=90°,AD=BC=4,AB=CD=6,∴∠ADE+∠EDC=90°,∵DF⊥DE,∴∠EDC+∠CDF=90°,∴∠ADE=∠CDF,且∠A=∠DCF=90°,∴△DAE∽△DCF;(2)∵△DAE∽△DCF,∴,∴∴y=x+4;(3)∵四边形EBFD为轴对称图形,∴DE=BE,∵AD2+AE2=DE2,∴16+AE2=(6﹣AE)2,∴AE=,∴DE=BE=,∴cos∠AED==,故答案为:.【点睛】本题属于相似形三角形综合题,考查了相似三角形的判定和性质、矩形的性质、勾股定理、轴对称图形的性质等知识,灵活运用相似三角形的判定和性质是解答本题的关键.20、4米【分析】由题意过点D作DE⊥AB于点E,过点C作CF⊥DE于点F,并利用解直角三角形进行分析求解即可.【详解】解:过点D作DE⊥AB于点E,过点C作CF⊥DE于点F.由题意得,AB=57,DE=30,∠A=37°,∠DCF=45°.在Rt△ADE中,∠AED=90°,∴tan37°=≈0.1.∴AE=2.∵AB=57,∴BE=3.∵四边形BCFE是矩形,∴CF=BE=3.在Rt△DCF中,∠DFC=90°,∴∠CDF=∠DCF=45°.∴DF=CF=3.∴BC=EF=30-3=4.答:教学楼BC高约4米.【点睛】本题考查解直角三角形得的实际应用,利用解直角三角形相关结合锐角三角函数进行分析.21、(1);(2)【分析】(1)根据概率公式求解可得;(2)此题需要两步完成,所以采用树状图法或者采用列表法都比较简单,求得全部情况的总数与符合条件的情况数目;二者的比值就是其发生的概率.【详解】解:(1)根据题意,甲参加第一场比赛时,有(甲,乙)、(甲,丙)两种可能,∴另一位选手恰好是乙同学的概率;(2)画树状图如下:所有可能出现的情况有6种,其中乙丙两位同学参加第一场比赛的情况有2种,∴选中乙、丙两位同学参加第一场比赛的概率为=.【点睛】考核知识点:求概率.运用列举法求概率是关键.22、(1);(2)见解析,.【分析】(1)直接根据概率公式求解;(2)利用列表法展示所有12种等可能性结果,再找出小明两次抽取的卡片中有一张是科技社团D的结果数,然后根据概率公式求解.【详解】(1)小明从中随机抽取一张卡片是足球社团B的概率=;(2)列表如下:ABCDA(B,A)(C,A)(D,A)B(A,B)(C,B)(D,B)C(A,C)(B,C)(D,C)D(A,D)(B,D)(C,D)由表可知共有12种等可能结果,小明两次抽取的卡片中有一张是科技社团D的结果数为6种,所以小明两次抽取的卡片中有一张是科技社团D的概率为.【点睛】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率23、见解析【分析】连接AA′,作AA′的垂直平分线得到它的中点O,则点O为对称中心,延长BO到B′,使OB′=OB,延长CO到C′,使OC′=OC,则△A′B′C′满足条件.【详解】如图,点O和△A′B′C′为所作.【点睛】本题考查了根据旋转变化作图的知识,根据作线段的垂直平分线找到对称中心是解决问题的关键.24、(1)见解析;(2).【分析】(1)由等腰三角形的性质与圆周角定理,易得∠BCO=∠B=∠D;

(2)由垂径定理可求得CE与DE的长,然后证得△BCE∽△DAE,再由相似三角形的对应边成比例,求得BE的长,继而求得直径与半径,再求出圆心角∠BOD即可解决问题;【详解】(1)证明:∵OB=OC,∴∠BCO=∠B,∵∠B=∠D,∴∠BCO=∠D;(2)解:连接OD.∵AB是⊙O的直径,CD⊥AB,∴,∵∠B=∠D,∠BEC=∠DEC,∴△BCE∽△DAE,∴AE:CE=DE:BE,∴,解得:BE=3,∴AB=AE+BE=4,∴⊙O的半径为2,∵,∴∠EOD=60°,∴∠BOD=120°,∴的长.【点睛】此题考查圆周角定理、垂径定理、相似三角形的判定与性质以及等腰三角形的性质.注意在同圆或等圆中,同弧或等弧所对的圆周角相等.证得△BCE∽△DAE是解题关键.25、教学楼DF的高度为.【分析】延长AB交CF于E,先证明四边形AMFE是矩形,求出EF=AM=3,再设DE=x米,利用Rt△BCE得到AE=x+12,再根据Rt△ADE得到,即可得到x的值,由此根据DF=DE+EF求出结果.【详解】如图,延长AB交CF于E,由题意知:∠DAE=30,∠CBE=45,AB=9米,四边形ABNM是矩形,∵四边形ABNM是矩形,∴AB∥MN,∵CF⊥MN,∴∠AEC=∠MFC=90,∵∠AMF=∠MFC=∠AEF=90,∴四边形AMFE是矩形,∴EF=AM=3,设DE=x米,在Rt△BCE中,∠CBE=45,∴BE=CE=x+3,∵AB=9,∴AE=x+12,在Rt△ADE中,∠DA

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论