2022-2023学年山东省济南市平阴县数学八上期末统考模拟试题含解析_第1页
2022-2023学年山东省济南市平阴县数学八上期末统考模拟试题含解析_第2页
2022-2023学年山东省济南市平阴县数学八上期末统考模拟试题含解析_第3页
2022-2023学年山东省济南市平阴县数学八上期末统考模拟试题含解析_第4页
2022-2023学年山东省济南市平阴县数学八上期末统考模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.已知三角形的两边长分别为3cm和8cm,则这个三角形的第三边的长可能是(

)A.4cm

B.5cm

C.6cm

D.13cm2.如图所示,在△ABC中,∠ACB=90°,BE平分∠ABC,DE⊥AB于点D,如果AC=3cm,那么AE+DE等于()A.2cm B.3cm C.4cm D.5cm3.在实数0、、、、、、中,无理数有()个A.1 B.2 C.3 D.44.点先向左平移个单位长度,再向上平移个单位长度得到的点的坐标是()A. B. C. D.5.下列各式中,是最简二次根式的是()A. B. C. D.6.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有匹,小马有匹,则可列方程组为()A. B.C. D.7.如图1、2、3中,点、分别是正、正方形、正五边形中以点为顶点的相邻两边上的点,且,交于点,的度数分别为,,,若其余条件不变,在正九边形中,的度数是()A. B. C. D.8.已知P1(x1,y1),P2(x2,y2)是一次函数y=﹣x+5图象上的两个点,且x1<x2,则y1与y2的大小关系是()A.y1=y2 B.y1<y2 C.y1>y2 D.无法确定9.广州市发布2019年上半年空气质量状况,城区PM2.5平均浓度为0.000029克/立方米,0.000029用科学记数法表示为()A.2.9 B.2.9 C.2.9 D.2.910.如图,中,,,,则等于()A. B. C. D.11.两个小组同时从甲地出发,匀速步行到乙地,甲乙两地相距7500米,第一组的步行速度是第二组的1.2倍,并且比第二组早15分钟到达乙地,设第二组的步行速度为x千米/小时,根据题意可列方程是().A. B.C. D.12.如图,MN是等边三角形ABC的一条对称轴,D为AC的中点,点P是直线MN上的一个动点,当PC+PD最小时,∠PCD的度数是()A.30° B.15° C.20° D.35°二、填空题(每题4分,共24分)13.种菜能手王大叔种植了一批新品种黄瓜,为了了解这种黄瓜的生长情况,他随机抽查了50株黄瓜藤上长出的黄瓜根数,绘制了如图的统计图,则这组数据中黄瓜根数的中位数是__________.14.计算:=________.15.把一个等腰直角三角板放在黑板上画好了的平面直角坐标系内,如图,已知直角顶点A的坐标为(0,1),另一个顶点B的坐标为(﹣5,5),则点C的坐标为________.16.如图,已知点M(-1,0),点N(5m,3m+2)是直线AB:右侧一点,且满足∠OBM=∠ABN,则点N的坐标是_____.17.如图,中,,,、分别是、上两点,连接并延长,交的延长线于点,此时,,则的度数为______.18.如图,B处在A处的南偏西45°方向,C处在A处的南偏东15°方向,C处在B处的北偏东80°方向,则∠ACB=.三、解答题(共78分)19.(8分)阅读下面的证明过程,在每步后的横线上填写该步推理的依据,如图,,,是的角平分线,求证:.证明:是的角平分线()又()()()()又()()()20.(8分)如图,在中,和的平分线交于点,过点作,交于,交于,若,,试求的值.21.(8分)如图,在△ABC中,点O是AC边上一动点,过点O作BC的平行线交∠ACB的角平分线于点E,交∠ACB的外角平分线于点F(1)求证:EO=FO;(2)当点O运动到何处时,四边形CEAF是矩形?请证明你的结论.(3)在第(2)问的结论下,若AE=3,EC=4,AB=12,BC=13,请直接写出凹四边形ABCE的面积为.22.(10分)小聪和小明沿同一条路同时从学校出发到学校图书馆查阅资料,学校与图书馆的路程是千米,小聪骑自行车,小明步行,当小聪从原路回到学校时,小明刚好到达图书馆,图中折线和线段分别表示两人离学校的路程(千米)与所经过的时间(分钟)之间的函数关系,请根据图象回答下列问题:(1)小聪在图书馆查阅资料的时间为分钟,小聪返回学校的速度为千米/分钟;(2)请你求出小明离开学校的路程(千米)与所经过的时间(分钟)之间的函数关系;(3)求线段的函数关系式;(4)当小聪与小明迎面相遇时,他们离学校的路程是多少千米?23.(10分)在平面直角坐标系中,已知点A的坐标为(0,15),点B的坐标为(20,0).(1)求直线AB的表达式;(2)若点C的坐标为(m,9),且S△ABC=30,求m的值;(3)若点D的坐标为(12,0),在射线AB上有两点P,Q,使得以O,P,Q为顶点的三角形与△OPD全等,求点P的坐标.24.(10分)定义=ad﹣bc,若=10,求x的值.25.(12分)如图:已知∠AOB和C、D两点,求作一点P,使PC=PD,且P到∠AOB两边的距离相等.26.阅读下面的文字,解答问题,例如:,即,的整数部分是2,小数部分是;(1)试解答:的整数部分是____________,小数部分是________(2)已知小数部分是,小数部分是,且,请求出满足条件的的值.

参考答案一、选择题(每题4分,共48分)1、C【详解】根据三角形两边之和大于第三边,两边之差小于第三边,可知第三边应大于5且小于11,故选C2、B【分析】直接利用角平分线的性质得出DE=EC,进而得出答案.【详解】解:∵△ABC中,∠ACB=90°,BE平分∠ABC,DE⊥AB于点D,

∴EC=DE,

∴AE+DE=AE+EC=3cm.

故选:B.【点睛】此题主要考查了角平分线的性质,得出EC=DE是解题关键.3、C【分析】根据无理数的定义即可得.【详解】在这些实数中,无理数为,,,共有3个,故选:C.【点睛】本题考查了无理数,熟记定义是解题关键.4、B【分析】直接利用平移中点的变化规律求解即可,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【详解】∵2-3=-1,-1+2=1,∴得到的点的坐标是(-1,1).故选B.【点睛】本题考查图形的平移变换,关键是要懂得左右移动改变点的横坐标,左减,右加;上下移动改变点的纵坐标,下减,上加.5、D【分析】根据最简二次根式的概念对每个选项进行判断即可.【详解】A、,不是最简二次根式,此选项不正确;B、,不是最简二次根式,此选项不正确;C、,不是最简二次根式,此选项不正确;D、,不能再进行化简,是最简二次根式,此选项正确;故选:D.【点睛】本题考查了最简二次根式,熟练掌握概念是解题的关键.6、B【分析】设大马有匹,小马有匹,根据题意可得等量关系:大马数+小马数=100,大马拉瓦数+小马拉瓦数=100,根据等量关系列出方程即可.【详解】解:设大马有匹,小马有匹,由题意得:,故选:B.【点睛】本题主要考查的是由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系,列出方程组.7、C【分析】根据等边三角形的性质得出AB=BC,∠ABC=∠C=60,证△ABE≌△BCD,推出∠BAE=∠CBD,根据三角形的外角性质推出∠APD=∠BAE+∠ABD=∠ABC=60,同理其它情况也是∠APD等于其中一个角;正四边形时,同样能推出∠APD=∠ABC=90,正五边形时,∠APD=∠ABC==108,正六边形时,∠APD=∠ABC==120,依此类推得出正n边形时,∠APD=∠ABC=,故可求解.【详解】∵△ABC是等边三角形,∴AB=BC,∠ABC=∠C=60,∵在△ABE和△BCD中,∴△ABE≌△BCD,∴∠BAE=∠CBD,∴∠APD=∠BAE+∠ABD=∠CBD+∠ABD=∠ABC=60,即∠APD=60,同理:正四边形时,∠APD=90=,∴正五边形时,∠APD=∠ABC==108,正六边形时,∠APD=∠ABC==120,依此类推得出正n边形时,∠APD=∠ABC=,∴正九边形中,的度==故选C.【点睛】本题考查了等边三角形性质,全等三角形的性质和判定,正方形性质等知识点的应用,主要考查学生的推理能力和理解能力,能根据题意得出规律是解此题的关键.8、C【分析】根据k=﹣<0,可得y随x的增大而减小,即可得出y1与y1的大小关系.【详解】∵一次函数y=﹣x+5中,k=﹣<0,∴y随x的增大而减小,∵x1<x1,∴y1>y1.故选:C.【点睛】本题考查了一次函数的增减性问题,掌握一次函数增减性的性质以及判断方法是解题的关键.9、A【分析】科学记数法表示较小数时的形式为,其中,n为正整数,只要找到a,n即可.【详解】故选:A.【点睛】本题主要考查科学记数法,掌握科学记数法的形式是解题的关键.10、B【分析】延长BO交AC于D,直接利用三角形的一个外角等于与它不相邻的两内角之和,即可得出结论.【详解】如图,延长BO交AC于D∵∠A=40°,∠ABO=20°,∴∠BDC=∠A+∠ABO=40°+20°=60°,∵∠ACO=30°,∴∠BOC=∠ACO+∠BDC=30°+60°=90°,故选:B.【点睛】此题主要考查了三角形外角的性质,熟记三角形的外角的性质是解本题的关键.11、D【分析】根据第二组的速度可得出第一组的速度,依据“时间=路程÷速度”即可找出第一、二组分别到达的时间,再根据第一组比第二组早15分钟(小时)到达乙地即可列出分式方程,由此即可得出结论.【详解】解:设第二组的步行速度为x千米/小时,则第一组的步行速度为1.2x千米/小时,

第一组到达乙地的时间为:7.5÷1.2x;

第二组到达乙地的时间为:7.5÷x;

∵第一组比第二组早15分钟(小时)到达乙地,

∴列出方程为:.故选:D.【点睛】本题考查了由实际问题抽象出分式方程,解题的关键是根据数量关系列出分式方程.本题属于基础题,难度不大,解决该题型题目时,根据数量关系列出方程(或方程组)是关键.12、A【分析】由于点C关于直线MN的对称点是B,所以当三点在同一直线上时,的值最小.【详解】由题意知,当B.

P、D三点位于同一直线时,PC+PD取最小值,连接BD交MN于P,∵△ABC是等边三角形,D为AC的中点,∴BD⊥AC,∴PA=PC,∴【点睛】考查轴对称-最短路线问题,找出点C关于直线MN的对称点是B,根据两点之间,线段最短求解即可.二、填空题(每题4分,共24分)13、【分析】根据直方图和中位数的定义,即可得到答案.【详解】解:∵他随机抽查了50株黄瓜藤上长出的黄瓜根数,∴中位数落在第25株和第26株上,分别为10根、10根;∴中位数为10;故答案为:10.【点睛】本题考查了中位数及条形统计图的知识,解答本题的关键是理解中位数的定义,能看懂统计图.14、1【分析】把给的算式进行因式分解后再计算即可.【详解】20192-20182=(2019+2018)()=2019+2018=1.故答案为:1.【点睛】本题考查有理数的乘方运算,关键是利用因式分解可简化运算.15、(﹣4,﹣4)【分析】如图,过点B、C分别作BG⊥y轴、CH⊥y轴,先根据AAS证明△ABG≌△CAH,从而可得AG=CH,BG=AH,再根据A、B两点的坐标即可求出OH、CH的长,继而可得点C的坐标.【详解】解:过点B、C分别作BG⊥y轴、CH⊥y轴,垂足分别为G、H,则∠AGB=∠CHA=90°,∠ABG+∠BAG=90°,∵∠BAC=90°,∴∠CAH+∠BAG=90°,∴∠ABG=∠CAH,又∵AB=AC,∴△ABG≌△CAH(AAS).∴AG=CH,BG=AH,∵A(0,1),∴OA=1,∵B(﹣5,5),∴BG=5,OG=5,∴AH=5,AG=OG-OA=5-1=4,∴CH=4,OH=AH-OA=5-1=4,∴点C的坐标为(―4,―4).故答案为(―4,―4).【点睛】本题以平面直角坐标系为载体,考查了等腰直角三角形的性质和全等三角形的判定与性质,难度不大,属于基础题型,过点B、C分别作BG⊥y轴、CH⊥y轴构造全等三角形是解题的关键.16、【分析】在x轴上取一点P(1,0),连接BP,作PQ⊥PB交直线BN于Q,作QR⊥x轴于R,构造全等三角形△OBP≌△RPQ(AAS);然后根据全等三角形的性质、坐标与图形性质求得Q(5,1),易得直线BQ的解析式,所以将点N代入该解析式来求m的值即可.【详解】解:在x轴上取一点P(1,0),连接BP,

作PQ⊥PB交直线BN于Q,作QR⊥x轴于R,

∴∠BOP=∠BPQ=∠PRQ=90°,

∴∠BPO=∠PQR,

∵OA=OB=4,

∴∠OBA=∠OAB=45°,

∵M(-1,0),

∴OP=OM=1,

∴BP=BM,

∴∠OBP=∠OBM=∠ABN,

∴∠PBQ=∠OBA=45°,

∴PB=PQ,

∴△OBP≌△RPQ(AAS),

∴RQ=OP=1,PR=OB=4,

∴OR=5,

∴Q(5,1),∴直线BN的解析式为y=−x+4,将N(5m,3m+2)代入y=−x+4,得3m+2=﹣×5m+4解得m=,∴N.故答案为:【点睛】本题考查了一次函数综合题,需要熟练掌握待定系数法确定函数关系式,一次函数图象上点的坐标特征,全等三角形的判定与性质,坐标与图形性质,两点间的距离公式等知识点,难度较大.17、145°【分析】根据三角形外角性质求出,,代入求出即可.【详解】解:,,,,,故答案为:.【点睛】本题考查了三角形的外角性质,能熟记三角形外角性质的内容是解此题的关键,注意:三角形的一个外角等于和它不相邻的两个内角的和.18、85°.【解析】试题分析:令A→南的方向为线段AE,B→北的方向为线段BD,根据题意可知,AE,DB是正南,正北的方向BD//AE=45°+15°=60°又=180°-60°-35°=85°.考点:1、方向角.2、三角形内角和.三、解答题(共78分)19、见解析.【分析】根据内错角相等两直线平行,角平分线的定义,等量代换,同位角相等两直线平行填空即可.【详解】证明:是的角平分线(角平分线的定义)又(等量代换)(内错角相等,两直线平行)(两直线平行,同旁内角互补)又(同角的补角相等)(同位角相等,两直线平行)【点睛】此题考查平行线的性质及判定,同角的补角相等,角平分线的定义,熟练运用是解题的关键.20、1【分析】根据角的平分线性质和平行线的性质来证明△EBO,△CFO是等腰三角形,BE=OE=3,OF=FC=1.【详解】∵平分,∴平分,∴又,∴,∴,∴∵,∴,∴【点睛】本题考查了角的平分线的性质和平行线的性质.21、(1)详见解析;(2)当点O运动到AC的中点时,四边形CEAF是矩形,理由详见解析;(3)1.【分析】(1)由平行线的性质和角平分线的定义得出∠OEC=∠OCE,证出EO=CO,同理得出FO=CO,即可得出EO=FO;(2)由对角线互相平分证明四边形CEAF是平行四边形,再由对角线相等即可得出结论;(3)先根据勾股定理求出AC,得出△ACE的面积=AE×EC,再由勾股定理的逆定理证明△ABC是直角三角形,得出△ABC的面积=AB•AC,凹四边形ABCE的面积=△ABC的面积﹣△ACE的面积,即可得出结果.【详解】(1)证明:∵EF∥BC,∴∠OEC=∠BCE,∵CE平分∠ACB,∴∠BCE=∠OCE,∴∠OEC=∠OCE,∴EO=CO,同理:FO=CO,∴EO=FO;(2)解:当点O运动到AC的中点时,四边形CEAF是矩形;理由如下:由(1)得:EO=FO,又∵O是AC的中点,∴AO=CO,∴四边形CEAF是平行四边形,∵EO=FO=CO,∴EO=FO=AO=CO,∴EF=AC,∴四边形CEAF是矩形;(3)解:由(2)得:四边形CEAF是矩形,∴∠AEC=90°,∴AC===5,△ACE的面积=AE×EC=×3×4=6,∵122+52=132,即AB2+AC2=BC2,∴△ABC是直角三角形,∠BAC=90°,∴△ABC的面积=AB•AC=×12×5=30,∴凹四边形ABCE的面积=△ABC的面积﹣△ACE的面积=30﹣6=1;故答案为1.【点睛】本题考查了角平分线的概念,三角形的性质,矩形的判断以及四边形与几何动态综合,知识点综合性强,属于较难题型.22、(1)15;;(2)s与t的函数关系式s=t(0≤t≤45).(1)线段的函数解析式为s=-t+12(10≤t≤45);(4)1千米【分析】(1)直接根据图象上所给的数据的实际意义可求解;(2)由图象可知,s是t的正比例函数,设所求函数的解析式为s=kt(k≠0),把(45,4)代入解析式利用待定系数法即可求解;(1)由图象可知,小聪在10≤t≤45的时段内s是t的一次函数,设线段的函数解析式为s=mt+n(m≠0)把(10,4),(45,0)代入利用待定系数法先求得函数关系式,(4)根据求函数图象的交点方法求得函数交点坐标即可.【详解】(1)∵10−15=15,4÷15=∴小聪在天一阁查阅资料的时间和小聪返回学校的速度分别是15分钟,千米/分钟.故答案为:15;;(2)由图象可知,s是t的正比例函数设所求函数的解析式为s=kt(k≠0)代入(45,4),得4=45k解得k=∴s与t的函数关系式s=t(0≤t≤45).(1)由图象可知,小聪在10≤t≤45的时段内s是t的一次函数,设线段的函数解析式为s=mt+n(m≠0)代入(10,4),(45,0),得解得∴s=-t+12(10≤t≤45),即线段的函数解析式为s=-t+12(10≤t≤45);(4)令-t+12=t,解得t=当t=时,S=×=1.答:当小聪与小明迎面相遇时,他们离学校的路程是1千米.【点睛】主要考查了一次函数的实际运用和读图能力.从图象中获得所需的信息是需要掌握的基本能力,还要会熟练地运用待定系数法求函数解析式和使用方程组求交点坐标的方法.23、(1);(2)m=4或m=12;(3)P1(12,6),P2(4,12),P3(36,-12)【分析】(1)运用待定系数法求解即可;(2)结合C的坐标,表示出三角形ABC的面积,分类求解即可;(3)针对P的位置进行分类讨论即可.【详解】(1)∵点A(0,15)在直线AB上,故可设直线AB的表达式为y=kx+15又∵点B(20,0)在直线AB上∴20k+15=0,∴k=,∴直线AB的表达为;(2)过C作CM∥x轴交AB于M∵点C的坐标为(m,9)∴点M的纵坐标为9,当y=9时,x+15=9,解得x=8,∴M(8,9),∴CM=|m-8|,∴S△ABC=S△AMC+S△BMC=CM·(yA-yM)+CM·(yM-yB)=CM·OA=|m-8|∵S△ABC=30,∴|m-8|=30,解得m=4或m=12;(3)①当点P在线段AB上时,(i)若点P在B,Q之间,当OQ=OD=12,且∠POQ=∠POD时,△OPQ≌△OPD,∵OA=15,OB=20,∴AB==25,设△AOB中AB边上的高为h,则AB·h=OA·OB,∴h=12,∴OQ⊥AB,∴PD⊥OB,∴点P的横坐标为12,当x=12时,y=x+15=6,∴P1(12,6),(ii)若点P在A,Q之间,当PQ=OD=12,且∠OPQ=∠POD时,有△POQ≌△OPD,则BP=OB=20,∴BP:AB=20:25=4:5,∴S△POB=S△AOB,作PH⊥OB于H,则S△POB=OB·PH,∴OB·PH=×OB·O

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论