




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题提升训练(五)活用“三线合一”巧解题第2章特殊三角形专题提升训练(五)第2章特殊三角形123456提示:点击进入习题答案显示习题链接∠B=∠C=40°,∠BAD=∠CAD=50°AE=7△DEF为等腰直角三角形证明见习题证明见习题证明见习题123456提示:点击进入习题答案显示习题链接1.如图,已知∠BAC=100°,AD⊥BC,AB=AC.求∠B,∠C,∠BAD,∠CAD的度数.
1.如图,已知∠BAC=100°,AD⊥BC,AB=AC.求2.如图,在△ABC中,AB=AC,AD=DB,DE⊥AB于点E.若BC=10,且△BDC的周长为24,求AE的长.
2.如图,在△ABC中,AB=AC,AD=DB,DE⊥AB于3.如图,在△ABC中,∠BAC=90°,AB=AC,D为BC的中点,E,F分别为AB,CA的延长线上的点,且BE=AF.请判断△DEF的形状,并说明理由.【点拨】本题证明△BDE≌△ADF,进而得到DE=DF,∠EDB=∠FDA.再运用角的转化得到∠EDF=90°,故可判断△DEF为等腰直角三角形.3.如图,在△ABC中,∠BAC=90°,AB=AC,D为B解:△DEF为等腰直角三角形.理由如下.连结AD,∵AB=AC,∠BAC=90°,∴∠ABC=∠C=45°.∴∠EBD=135°.∵D为BC的中点,∴AD⊥BC.易得∠ABC=∠BAD=∠DAC=∠C=45°,∴BD=AD,∠FAD=135°,∴∠EBD=∠FAD.解:△DEF为等腰直角三角形.理由如下.易得∠ABC=∠BA又∵BE=AF,∴△BDE≌△ADF,∴DE=DF,∠EDB=∠FDA,∴∠EDF=∠EDB+∠BDF=∠FDA+∠BDF=∠ADB=90°.∴△DEF为等腰直角三角形.又∵BE=AF,4.如图,在△ABC中,AC=2AB,AD平分∠BAC,E是AD上一点,且EA=EC.求证:EB⊥AB.4.如图,在△ABC中,AC=2AB,AD平分∠BAC,E是浙教版八年级上册-数学-第2章特殊三角形--专题训练-《活用“三线合一”巧解题》课件5.如图,已知等腰直角三角形ABC中,AB=AC,∠BAC=90°,BF平分∠ABC,CD⊥BD交BF的延长线于点D.求证:BF=2CD.5.如图,已知等腰直角三角形ABC中,AB=AC,∠BAC=证明:如图,延长BA,CD交于点E.∵BF平分∠ABC,∴∠CBD=∠EBD.∵CD⊥BD,∴∠BDC=∠BDE=90°.又∵BD=BD,∴△BDC≌△BDE.∴BC=BE.又∵BD⊥CE,∴CE=2CD.∵∠BAC=90°,∠BDC=90°,∠AFB=∠DFC,∴∠ABF=∠DCF.又∵AB=AC,∠BAF=∠CAE=90°,∴△ABF≌△ACE(ASA).∴BF=CE.∴BF=2CD.证明:如图,延长BA,CD交于点E.又∵BD⊥CE,∴CE=6.如图,在△ABC中,AD⊥BC于点D,且∠ABC=2∠C.求证:CD=AB+BD.6.如图,在△ABC中,AD⊥BC于点D,且∠ABC=2∠C证明:如图,以A为圆心,AB长为半径画弧交CD于点E,连结AE,则AE=AB,所以∠AEB=∠ABC.因为AD⊥BC,所以在△ABE中,AD是BE边上的中线,即DE=BD.又因为∠ABC=2∠C,所以∠AEB=2∠C.而∠AEB=∠CAE+∠C,所以∠CAE=∠C.所以CE=AE=AB,故CD=AB+BD.证明:如图,以A为圆心,AB长为半径画弧交CD于点E,连结A浙教版八年级上册-数学-第2章特殊三角形--专题训练-《活用“三线合一”巧解题》课件专题提升训练(五)活用“三线合一”巧解题第2章特殊三角形专题提升训练(五)第2章特殊三角形123456提示:点击进入习题答案显示习题链接∠B=∠C=40°,∠BAD=∠CAD=50°AE=7△DEF为等腰直角三角形证明见习题证明见习题证明见习题123456提示:点击进入习题答案显示习题链接1.如图,已知∠BAC=100°,AD⊥BC,AB=AC.求∠B,∠C,∠BAD,∠CAD的度数.
1.如图,已知∠BAC=100°,AD⊥BC,AB=AC.求2.如图,在△ABC中,AB=AC,AD=DB,DE⊥AB于点E.若BC=10,且△BDC的周长为24,求AE的长.
2.如图,在△ABC中,AB=AC,AD=DB,DE⊥AB于3.如图,在△ABC中,∠BAC=90°,AB=AC,D为BC的中点,E,F分别为AB,CA的延长线上的点,且BE=AF.请判断△DEF的形状,并说明理由.【点拨】本题证明△BDE≌△ADF,进而得到DE=DF,∠EDB=∠FDA.再运用角的转化得到∠EDF=90°,故可判断△DEF为等腰直角三角形.3.如图,在△ABC中,∠BAC=90°,AB=AC,D为B解:△DEF为等腰直角三角形.理由如下.连结AD,∵AB=AC,∠BAC=90°,∴∠ABC=∠C=45°.∴∠EBD=135°.∵D为BC的中点,∴AD⊥BC.易得∠ABC=∠BAD=∠DAC=∠C=45°,∴BD=AD,∠FAD=135°,∴∠EBD=∠FAD.解:△DEF为等腰直角三角形.理由如下.易得∠ABC=∠BA又∵BE=AF,∴△BDE≌△ADF,∴DE=DF,∠EDB=∠FDA,∴∠EDF=∠EDB+∠BDF=∠FDA+∠BDF=∠ADB=90°.∴△DEF为等腰直角三角形.又∵BE=AF,4.如图,在△ABC中,AC=2AB,AD平分∠BAC,E是AD上一点,且EA=EC.求证:EB⊥AB.4.如图,在△ABC中,AC=2AB,AD平分∠BAC,E是浙教版八年级上册-数学-第2章特殊三角形--专题训练-《活用“三线合一”巧解题》课件5.如图,已知等腰直角三角形ABC中,AB=AC,∠BAC=90°,BF平分∠ABC,CD⊥BD交BF的延长线于点D.求证:BF=2CD.5.如图,已知等腰直角三角形ABC中,AB=AC,∠BAC=证明:如图,延长BA,CD交于点E.∵BF平分∠ABC,∴∠CBD=∠EBD.∵CD⊥BD,∴∠BDC=∠BDE=90°.又∵BD=BD,∴△BDC≌△BDE.∴BC=BE.又∵BD⊥CE,∴CE=2CD.∵∠BAC=90°,∠BDC=90°,∠AFB=∠DFC,∴∠ABF=∠DCF.又∵AB=AC,∠BAF=∠CAE=90°,∴△ABF≌△ACE(ASA).∴BF=CE.∴BF=2CD.证明:如图,延长BA,CD交于点E.又∵BD⊥CE,∴CE=6.如图,在△ABC中,AD⊥BC于点D,且∠ABC=2∠C.求证:CD=AB+BD.6.如图,在△ABC中,AD⊥BC于点D,且∠ABC=2∠C证明:如图,以A为圆心,AB长为半径画弧交CD于点E,连结AE,则AE=AB,所以∠AEB=∠ABC.因为AD⊥BC,所以在△ABE中,AD
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025至2030年扭线扣项目投资价值分析报告
- 2025至2030年手压手电筒项目投资价值分析报告
- 公关情境面试题目及答案
- 家校矛盾面试题及答案
- 园艺师光合作用机制试题及答案
- 2025至2030年天歧可溶粉项目投资价值分析报告
- 2025至2030年圆柱屏风组合台项目投资价值分析报告
- 2025至2030年台式带锯项目投资价值分析报告
- 2025至2030年反射风嘴项目投资价值分析报告
- 乐观悲观面试题目及答案
- 生物地球化学性疾病试题
- 休闲与旅游农业课件
- 感觉障碍护理课件
- 脊髓小脑性共济失调学习课件
- 体育运动员参赛健康状况证明模板
- 教师的挑战:宁静的课堂革命
- 菲亚特博悦说明书
- 空调维保服务方案(技术方案)
- 高空发光字安装应急预案
- 量具能力准则Cg-Cgk评价报告
- 中药房中药斗谱编排规则和斗谱图
评论
0/150
提交评论