版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.下列图案中,是轴对称图形的是()A. B. C. D.2.如图,,,,,则的度数是()A.80° B.40° C.60° D.无法确定3.化简式子的结果为()A. B. C. D.4.下列运算正确的是()A.3a•4a=12aB.(a3)2=a6C.(﹣2a)3=﹣2a3D.a12÷a3=a45.计算的结果是()A. B. C. D.6.如图所示,是一块三角形的草坪,现要在草坪上建一凉亭供大家休息,要使凉亭到草坪三条边的距离相等,凉亭的位置应选在()A.△ABC的三条中线的交点 B.△ABC三边的中垂线的交点C.△ABC三条角平分线的交点 D.△ABC三条高所在直线的交点.7.下列计算中正确的是()A.(ab3)2=ab6 B.a4÷a=a4 C.a2•a4=a8 D.(﹣a2)3=﹣a68.下列实数中,是无理数的是()A.3.14159265 B. C. D.9.若分式的值不存在,则的值是()A. B. C. D.10.下列分解因式正确的是(
)A.x3﹣x=x(x2﹣1)
B.x2+y2=(x+y)(x﹣y)C.(a+4)(a﹣4)=a2﹣16
D.m2+m+=(m+)211.今天早晨上7点整,小华以50米/分的速度步行去上学,妈妈同时骑自行车向相反的方向去上班,10分钟时按到小华的电话,立即原速返回并前往学校,恰与小华同时到达学校他们离家的距离y(米)与时间x(分)间的函数关系如图所示,有如下的结论:①妈妈骑骑自行车的速度为250米/分;②小华家到学校的距离是1250米;③小华今早晨上学从家到学校的时间为25分钟:④在7点16分40秒时妈妈与小华在学校相遇.其中正确的结论有()A.1个 B.2个 C.3个 D.4个12.如图,已知△ABC是等腰直角三角形,∠A=90°,BD是∠ABC的平分线,DE⊥BC于E,若BC=10cm,则△DEC的周长为()A.8cm B.10cm C.12cm D.14cm二、填空题(每题4分,共24分)13.在平行四边形ABCD中,BC边上的高为4,AB=5,,则平行四边形ABCD的周长等于______________.14.若关于x的方程无解,则m的值是____.15.当时,分式有意义.16.在平面直角坐标系中,若点到原点的距离是,则的值是________.17.如图,直线与轴、轴的交点分别为,若直线上有一点,且点到轴的距离为1.5,则点的坐标是_______.18.若等腰三角形顶角为70°,则底角为_____.三、解答题(共78分)19.(8分)如图,在平面直角坐标系中,三个顶点的坐标分别是,,.(1)在图中,以轴为对称轴,作出的轴对称图形.(2)在图中,把平移使点平移到点,请作出平移后的,并直接写出点和点的坐标.20.(8分)为增强学生的身体素质,教育行政部门规定学生每天参加户外活动的平均时间不少于1小时.为了解学生参加户外活动的情况,对部分学生参加户外活动的时间进行抽样调查,并将调查结果绘制作成如下两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)补全频数分布直方图;(2)表示户外活动时间1小时的扇形圆心角的度数是多少;(3)本次调查学生参加户外活动时间的众数是多少,中位数是多少;(4)本次调查学生参加户外活动的平均时间是否符合要求?21.(8分)在△ABC中,∠ABC=45°,F是高AD与高BE的交点.(1)求证:△ADC≌△BDF.(2)连接CF,若CD=4,求CF的长.22.(10分)(1)计算:;(2)已知:,求的值.23.(10分)已知:如图①,是等边三角形,是边上一点,平行交于点.(1)求证:是等边三角形(2)连接,延长至点,使得,如图②.求证:.24.(10分)(1)分解因式:;(2)化简求值:,其中.25.(12分)先化简:,其中从,,中选一个恰当的数求值.26.一个正方形的边长增加,它的面积增加了,求原来这个正方形的边长.
参考答案一、选择题(每题4分,共48分)1、D【分析】根据轴对称图形的定义逐项判断即得答案.【详解】解:A、不是轴对称图形,本选项不符合题意;B、不是轴对称图形,本选项不符合题意;C、不是轴对称图形,本选项不符合题意;D、是轴对称图形,本选项符合题意.故选:D.【点睛】本题考查的是轴对称图形的概念,属于基础概念题型,熟知轴对称图形的定义是关键.2、B【解析】首先证明,求出,然后证明,根据平行线的性质即可得解.【详解】解:∵,∴,∴.∵.∴,∵,∴.∵.∴.∴.故选B.【点睛】本题主要考查平行线的判定与性质,解题的关键是掌握平行线的判定与性质及角的和差计算.3、D【分析】根据二次根式有意义的条件即可求出a的取值范围,然后根据二次根式的除法公式和分母有理化化简即可.【详解】解:,即,故选:D.【点睛】此题考查的是二次根式的化简,掌握二次根式有意义的条件、二次根式的除法公式和分母有理化是解题关键.4、B【解析】直接利用单项式乘以单项式以及幂的乘方运算法则分别化简得出答案.【详解】解:A、3a•4a=12a2,故此选项错误;B、(a3)2=a6,正确;C、(﹣2a)3=﹣8a3,故此选项错误;D、a12÷a3=a9,故此选项错误;故选:B.【点睛】此题主要考查了单项式乘以单项式以及幂的乘方运算,正确掌握相关运算法则是解题关键.5、A【分析】把分子与分母能因式分解的先进行因式分解,然后再约分即可得到答案.【详解】.故选:A.【点睛】此题主要考查了分的乘法运算,正确掌握分式的基本性质是解题的关键.6、C【分析】由于凉亭到草坪三条边的距离相等,所以根据角平分线上的点到边的距离相等,可知是△ABC三条角平分线的交点.由此即可确定凉亭位置.【详解】解:∵凉亭到草坪三条边的距离相等,
∴凉亭选择△ABC三条角平分线的交点.
故选:C.【点睛】本题主要考查的是角平分线的性质在实际生活中的应用.主要利用了利用了角平分线上的点到角两边的距离相等.7、D【分析】分别根据积的乘方运算法则、同底数幂的除法和同底数幂的乘法运算法则依次计算即可得出答案.【详解】解:A、(ab3)2=a2b6≠ab6,所以本选项错误;B、a4÷a=a3≠a4,所以本选项错误;C、a2•a4=a6≠a8,所以本选项错误;D、(﹣a2)3=﹣a6,所以本选项正确.故选:D.【点睛】本题考查了幂的运算性质,属于基础题型,熟练掌握幂的运算法则是解题的关键.8、C【解析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】A.3.1415926是有限小数是有理数,选项错误.B.6,是整数,是有理数,选项错误;C.是无理数,选项正确;D.是分数,是有理数,选项错误.故选C.【点睛】本题考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有特定规律的数.9、D【解析】根据分式的值不存在,可得分式无意义,继而根据分式无意义时分母为0进行求解即可得.【详解】∵分式的值不存在,∴分式无意义,∴2x-3=0,∴x=,故选D.【点睛】本题考查了分式无意义的条件,弄清题意,熟练掌握分母为0时分式无意义是解题的关键.10、D【解析】试题分析:A、x3﹣x=x(x+1)(x-1),故此选项错误;B、x2+y2不能够进行因式分解,故错选项错误;C、是整式的乘法,不是因式分解,故此选项错误;D、正确.故选D.11、C【分析】①由函数图象可以求出妈妈骑车的速度是210米/分;
②设妈妈到家后追上小华的时间为x分钟,就可以求出小华家到学校的距离;
③由②结论就可以求出小华到校的时间;
④由③的结论就可以求出相遇的时间.【详解】解:①由题意,得
妈妈骑车的速度为:2100÷10=210米/分;
②设妈妈到家后追上小华的时间为x分钟,由题意,得
210x=10(20+x),
解得:x=1.
∴小华家到学校的距离是:210×1=1210米.
③小华今天早晨上学从家到学校的时间为1210÷10=21分钟,
④由③可知在7点21分时妈妈与小华在学校相遇.
∴正确的有:①②③共3个.
故选:C.【点睛】本题考查了追击问题的数量关系的运用,路程÷速度=时间的关系的运用,解答时认真分析函数图象的意义是关键.12、B【解析】根据“AAS”证明
ΔABD≌ΔEBD
.得到AD=DE,AB=BE,根据等腰直角三角形的边的关系,求其周长.【详解】∵BD是∠ABC的平分线,∴∠ABD=∠EBD.又∵∠A=∠DEB=90°,BD是公共边,∴△ABD≌△EBD(AAS),∴AD=ED,AB=BE,∴△DEC的周长是DE+EC+DC=AD+DC+EC=AC+EC=AB+EC=BE+EC=BC=10cm.故选B.【点睛】本题考查了等腰直角三角形的性质,角平分线的定义,全等三角形的判定与性质.掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.二、填空题(每题4分,共24分)13、12或1【分析】根据题意分别画出图形,BC边上的高在平行四边形的内部和外部,进而利用勾股定理求出即可.【详解】解:情况一:当BC边上的高在平行四边形的内部时,如图1所示:在平行四边形ABCD中,BC边上的高为4,AB=5,AC=,在Rt△ACE中,由勾股定理可知:,在Rt△ABE中,由勾股定理可知:,∴BC=BE+CE=3+2=5,此时平行四边形ABCD的周长等于2×(AB+BC)=2×(5+5)=1;情况二:当BC边上的高在平行四边形的外部时,如图2所示:在平行四边形ABCD中,BC边上的高为AE=4,AB=5,AC=在Rt△ACE中,由勾股定理可知:,在Rt△ABE中,由勾股定理可知:,∴BC=BE-CE=3-2=1,∴平行四边形ABCD的周长为2×(AB+BC)=2×(5+1)=12,综上所述,平行四边形ABCD的周长等于12或1.故答案为:12或1.【点睛】此题主要考查了平行四边形的性质以及勾股定理等知识,分高在平行四边形内部还是外部讨论是解题关键.14、3【分析】先去分母求出x的解,由增根x=4即可求出m的值.【详解】解方程m+1-x=0,解得x=m+1,∵增根x=4,即m+1=4∴m=3.【点睛】此题主要考查分式方程的增根,解题的关键是熟知解分式方程的方法.15、【分析】由分式有意义的条件:分母不为0,可得答案.【详解】解:由有意义得:故答案为:【点睛】本题考查的是分式有意义的条件,分母不为0,掌握知识点是解题的关键.16、3或-3【分析】根据点到原点的距离是,可列出方程,从而可以求得x的值.【详解】解:∵点到原点的距离是,∴,解得:x=3或-3,故答案为:3或-3.【点睛】本题考查了坐标系中两点之间的距离,解题的关键是利用勾股定理列出方程求解.17、或【分析】根据点到轴的距离为1.5,可得或,分别代入,即可得到点E的横坐标,进而即可求解.【详解】∵点到轴的距离为1.5,∴∴或,①当时,,解得:;②当时,,解得:.点的坐标为或.故答案是:或.【点睛】本题主要考查一次函数图象上点的坐标,根据题意,把一次函数化为一元一次方程,是解题的关键.18、55°【分析】等腰三角形的两个底角相等,三角形的内角和是180°,则一个底角度数=(180°−顶角度数)÷1.【详解】等腰三角形顶角为70°,则底角为(180°−70°)÷1=110°÷1=55°.故答案为55°.【点睛】解决本题的关键是明确等腰三角形的两个底角相等,三角形的内角和是180°.三、解答题(共78分)19、(1)画图见解析;(2)画图见解析,,【分析】(1)根据轴对称图形的性质画出;(2)点A平移到,是向上平移1个单位,向左平移3个单位,将B和O进行同样的平移.【详解】(1)即为所求.(2)即为所求,,.【点睛】本题考查画轴对称图形和图形的平移,解题的关键是掌握画轴对称图形的方法和图形平移的画法.20、(1)频数分布直方图如图所示;见解析;(2)在扇形统计图中的圆心角度数为144°;(3)1小时,1小时;(4)平均活动时间符合要求.【分析】(1)先根据条形统计图和扇形统计图的数据,由活动时间为0.5小时的数据求出参加活动的总人数,然后求出户外活动时间为1.5小时的人数;(2)先根据户外活动时间为1小时的人数,求出其占总人数的百分比,然后算出其在扇形统计图中的圆心角度数;(3)根据中位数和众数的概念,求解即可.(4)根据平均时间=总时间÷总人数,求出平均时间与1小时进行比较,然后判断是否符合要求;【详解】(1)调查总人数为:10÷20%=50(人),户外活动时间为1.5小时的人数为:50×24%=12(人),频数分布直方图如右图所示;(2)户外活动时间为1小时的人数占总人数的百分比为:×100%=40%,在扇形统计图中的圆心角度数为:40%×360°=144°.(3)将50人的户外活动时间按照从小到大的顺序排列,可知第25和第26人的户外运动时间都为1小时,故本次户外活动时间的中位数为1小时;由频数分布直方图可知,户外活动时间为1小时的人数最多,故本次户外活动时间的众数为1小时.(4)户外活动的平均时间为:×(10×0.5+20×1+12×1.5+8×2)=1.18(小时),∵1.18>1,∴平均活动时间符合要求.【点睛】本题考查的是统计图,熟练掌握直方图和扇形统计图是解题的关键.21、(1)见解析;(2)4【分析】(1)先证明AD=BD,再证明∠FBD=∠DAC,从而利用ASA证明△BDF≌△ADC;(2)利用全等三角形对应边相等得出DF=CD=4,根据勾股定理求出CF即可.【详解】(1)证明:∵AD⊥BC,∴∠FDB=∠ADC=90°,∵∠ABC=45°,∴∠BAD=45°=∠ABD,∴AD=BD,∵BE⊥AC,∴∠AEF=∠FDB=90°,∵∠AFE=∠BFD,∴由三角形内角和定理得:∠CAD=∠FBD,在△ADC和△BDE中∴△ADC≌△BDE(ASA);(2)解:∵△ADC≌△BDE,CD=4,∴DF=CD=4,在Rt△FDC中,由勾股定理得:CF===4.【点睛】此题主要考查等腰三角形的性质与证明,解题的关键是熟知全等三角形的判定与性质及等腰三角形的性质.22、(1)-3;(2)或.【分析】(1)原式利用算术平方根的定义,立方根和负整数指数评价的人运算法则进行计算,最后再进行加减运算即可;(2)方程利用平方根的定义开方即可求得方程的解.【详解】(1),=2-1-4=-3;(2)开方得,∴,解得,或.【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.23、(1)见解析;(2)见解析;【分析】(1)根据等边三角形的性质可得∠A=∠B=∠C=60°,然后利用平行线的性质可得∠CDE=∠A=60°,∠CED=∠B=60°,从而得出∠CDE=∠CED=∠C,然后根据等边三角形的判定即可证出结论;(2)先证出∠DEB=∠DCF,根据等边对等角证出∠DBE=∠DFC,然后利用AAS即可证出△DBE≌△DFC,从而得出BE
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年高品质乳制品采购与销售合作合同版
- 2024版动产质押担保合同模板一
- 2025年度大数据中心建设进场服务合同3篇
- 2024知识产权体系贯标服务协议
- 2024年吉林省《消防员资格证之一级防火考试》必刷500题标准卷
- 立春营销策略解析
- 2024标准个人借款合同范本
- 多媒体课件设计与开发知到智慧树章节测试课后答案2024年秋聊城大学
- 餐饮娱乐租赁居间合同
- 电梯安全门安装合同
- 教科版三年级上册科学教案(全册)
- 劳动力安排计划及劳动力计划表(样板)
- 利润表4(通用模板)
- 教育评价学全套ppt课件完整版教学教程
- 注塑领班作业指导书
- ASTM B330-20 Standard Test Methods for Estimating Average Particle Size of Metal Powders and Related Compounds Using%2
- 顾客忠诚度论文
- 血气分析及临床应用
- 浙江省市政工程安全台账完整
- 欧洲城市广场历史演变
- 个人信用报告异议申请表
评论
0/150
提交评论