版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.某数学兴趣小组设计了一种螺线,作法如下:在水平直线上取长度为1的线段AB,并作等边三角形ABC,然后以点B为圆心,BA为半径逆时针画圆弧,交线段CB的延长线于点D;再以点C为圆心,CD为半径逆时针画圆弧,交线段AC的延长线于点E,以此类推,得到的螺线如图所示.当螺线与直线有6个交点(不含A点)时,则螺线长度最小值为()A. B.C. D.2.将函数的图象向右平移个单位,得到函数的图象,若在上为增函数,则的最大值为A B.C. D.3.已知奇函数的定义域为,其图象是一条连续不断的曲线.若,则函数在区间内的零点个数至少为()A.1 B.2C.3 D.44.已知函数,则下列判断正确的是A.函数是奇函数,且在R上是增函数B.函数偶函数,且在R上是增函数C.函数是奇函数,且在R上是减函数D.函数是偶函数,且在R上是减函数5.的值是A.0 B.C. D.16.某三棱锥的三视图如图所示,则该三棱锥的体积是A. B.C. D.7.点P在正方形ABCD所在平面外,PD⊥平面ABCD,PD=AD,则PA与BD所成角的度数为()A.30° B.45°C.60° D.90°8.已知函数在上单调递减,则实数a的取值范围是A. B.C. D.9.函数的零点所在区间是A. B.C. D.10.设集合,则()A. B.C.{2} D.{-2,2}二、填空题:本大题共6小题,每小题5分,共30分。11.若数据的方差为3,则数据的方差为__________12.已知点,,则以线段为直径的圆的标准方程是__________13.设三棱锥的三条侧棱两两垂直,且,则三棱锥的体积是______14.方程的解为__________15.当时,函数的值总大于,则的取值范围是________16.经过两条直线和的交点,且垂直于直线的直线方程为__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,四棱锥的底面为正方形,底面,分别是的中点.(1)求证:平面;(2)求证:平面平面.18.设函数(1)求函数的值域;(2)设函数,若对,求正实数a的取值范围19.设向量(Ⅰ)若与垂直,求的值;(Ⅱ)求的最小值.20.设函数,.用表示,中的较大者,记为.已知关于的不等式的解集为(1)求实数,的值,并写出的解析式;21.在①“xA是xB的充分不必要条件;②;③这三个条件中任选一个,补充到本题第(2)问的横线处,求解下列问题:已知集合,.(1)当a=2时,求;(2)若选,求实数a的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】根据题意,找到螺线画法的规律,由此对选项逐一分析,从而得到答案【详解】第1次画线:以点为圆心,,旋转,划过的圆弧长为;第2次画线:以点为圆心,,旋转,划过的圆弧长为,交累计1次;第3次画线:以点为圆心,,旋转,划过的圆弧长为3,交累计2次;第4次画线:以点为圆心,,旋转,划过的圆弧长为;第5次画线:以点为圆心,,旋转,划过的圆弧长为,交累计3次;前5次累计画线;第6次画线:以点为圆心,,旋转,划过的圆弧长为,交累计4次,累计画线;第7次画线:以点为圆心,,旋转,划过的圆弧长为;第8次画线:以点为圆心,,旋转,划过的圆弧长为,交累计5次;第9次画线:以点为圆心,,旋转,划过的圆弧长为,交累计6次,累计画线,故选项A正确故选:A另解:由前三次规律可发现,每画三次,与l产生两个交点,故要产生6个交点,需要画9次;每一次画的圆弧长度是以为首项,为公差的等差数列,所以前9项之和为:﹒故选:A﹒2、B【解析】由题意可知,由在上为增函数,得,选B.3、C【解析】根据奇函数的定义域为R可得,由和奇函数的性质可得、,利用零点的存在性定理即可得出结果.【详解】奇函数的定义域为R,其图象为一条连续不断的曲线,得,由得,所以,故函数在之间至少存在一个零点,由奇函数的性质可知函数在之间至少存在一个零点,所以函数在之间至少存在3个零点.故选:C4、A【解析】求出的定义域,判断的奇偶性和单调性,进而可得解.【详解】的定义域为R,且;∴是奇函数;又和都是R上的增函数;是R上的增函数故选A【点睛】本题考查奇偶性的判断,考查了指数函数的单调性,属于基础题5、B【解析】利用诱导公式和和差角公式直接求解.【详解】故选:B6、B【解析】由三视图判断底面为等腰直角三角形,三棱锥的高为2,则,选B.【考点定位】三视图与几何体的体积7、C【解析】分别取AC.PC中点O.E.连OE,DE;则OE//PA,所以(或其补角)就是PA与BD所成的角;因PD⊥平面ABCD,所以PD⊥DC,PD⊥AD.设正方形ABCD边长为2,则PA=PC=BD=所以OD=OE=DE=,是正三角形,,故选C8、C【解析】由函数单调性的定义,若函数在上单调递减,可以得到函数在每一个子区间上都是单调递减的,且当时,,求解即可【详解】若函数在上单调递减,则,解得.故选C.【点睛】本题考查分段函数的单调性.严格根据定义解答,本题保证随的增大而减小,故解答本题的关键是的最小值大于等于的最大值9、B【解析】通过计算,判断出零点所在的区间.【详解】由于,,,故零点在区间,故选B.【点睛】本小题主要考查零点的存在性定理的应用,考查函数的零点问题,属于基础题.10、C【解析】解一元二次不等式,求出集合B,解得集合A,根据集合的交集运算求得答案.【详解】由题意解得:,故,或,所以,故选:C二、填空题:本大题共6小题,每小题5分,共30分。11、12【解析】所求方差为,填12、【解析】,,中点坐标为,圆的半径以为直径的圆的标准方程为,故答案为.13、【解析】根据锥体的体积公式,找到并求出三棱锥的高及底面面积即可求解.【详解】由题意可知该三棱锥为棱长为2的正方体的一个角,如图所示:所以故答案为:【点睛】本题考查锥体体积公式的应用,考查运算求解能力,属于基础题.14、【解析】令,则解得:或即,∴故答案为15、或,【解析】由指数函数的图象和性质可得即可求解.【详解】因为时,函数的值总大于,根据指数函数的图象和性质可得,解得:或,故答案为:或,16、【解析】联立方程组求得交点的坐标为,根据题意求得所求直线的斜率为,结合点斜式可得所求直线的方程.【详解】联立方程组,得交点,因为所求直线垂直于直线,故所求直线的斜率,由点斜式得所求直线方程为,即.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2)证明见解析.【解析】(1)连接BD,根据线面平行的判定定理只需证明EF∥PD即可;(2)利用线面垂直的判定定理可得面,再利用面面垂直的判定定理即证【小问1详解】如图,连结,则是的中点,又是的中点,∴,又∵平面,面,∴平面;【小问2详解】∵底面是正方形,∴,∵平面,平面,∴,又,∴面,又平面,故平面平面.18、(1)函数的值域为.(2)【解析】(1)由已知,利用基本不等式可求函数的值域;(2)由对可得函数函数在上的值域包含与函数在上的值域,由此可求正实数a的取值范围【小问1详解】,,则,当且仅当时取“=”,所以,即函数的值域为.【小问2详解】设,因为所以,函数在上单调递增,则函数在上单调递增,,设时,函数的值域为A.由题意知.函数图象的对称轴为,当,即时,函数在上递增,则,解得,当时,即时,函数在上的最大值为,中的较大者,而且,不合题意,当,即时,函数在上递减,则,满足条件的不存在,综上,19、(Ⅰ)2;(Ⅱ).【解析】(Ⅰ)先由条件得到的坐标,根据与垂直可得,整理得,从而得到.(Ⅱ)由得到,故当时,取得最小值为试题解析:(Ⅰ)由条件可得,因为与垂直,所以,即,所以,所以.(Ⅱ)由得,所以当时,取得最小值,所以的最小值为.20、(1),(2)【解析】(1)先由一元二次不等式的性质求出的值,再根据的图象得出其解析式;(2)将问题转化为,再解对数不等式得出实数的取值范围【小问1详解】∵的解集为,∴方程的两根分别为和2,由韦达定理可得:,解得,∴令,解得或,作出的图象如下图所示:则【小问2详解】由(1)得,当时,有最小值,即,∵,使得,∴只需即可,∴,∴,得,故21、(1);(2)答案见解析.【解析】(1)当时,求出集合再根据并集定义
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 教育行业在线培训课程设计与开发方案
- 土地承包定金合同
- 医疗设备采购及售后服务合同
- 代建工程合同范本(2025年)
- 耗材购销合同范本(2025年)
- 装修改造零星维修项目合同协议(2025年)
- 2025年房屋抵押借款合同
- 2025年船员劳动合同
- 2025年水路货物运输合同
- 策划营销服务合同范本2025年
- GB/T 2-2016紧固件外螺纹零件末端
- GB/T 12467.5-2009金属材料熔焊质量要求第5部分:满足质量要求应依据的标准文件
- GB 17740-1999地震震级的规定
- 安全生产事故举报奖励制度
- 冠心病健康教育完整版课件
- 永久避难硐室安装施工组织措施
- 元旦节前安全教育培训-教学课件
- 国家开放大学《理工英语1》单元自测8试题答案
- 芯片工艺流程课件1
- 人教版八年级下册生物期末测试卷带答案
- 《尖利的物体会伤人》安全教育课件
评论
0/150
提交评论