版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
教化精品资料六年级下册数学教案第一单元百分数的应用教材分析:百分数的简洁应用,运用方程解决简洁的百分数问题,在此根底上,本单元进一步学习百分数的应用。本单元学习的主要内容有:百分数的进一步应用、运用方程解决简洁的百分数问题。本单元主要是通过四个活动引导学生绽开学习的。本单元教材编写力图表达以下特点。1.留意百分数在实际生活中的应用2.激励学生根据问题中的数量关系以及百分数的意义解决问题教学目的1.在详细情境中理解“增加百分之几”或“削减百分之几”的意义,加深对百分数意义的理解。
2.能利用百分数的有关学问以及方程解决一些实际问题,进步解决实际问题的实力,感受百分数及日常生活的亲密联络。单元学习内容的前后联络单元教材分析在五年级下学期,学生已经学习了百分数的意义和读写,百分数和分数、小数的互化,教学重点:能运用所学学问解决有关百分数的实际问题。教学难点:运用方程解决简洁的百分数问题。评价建议本单元学问和技能评价主要是:能运用所学学问解决有关百分数的实际问题。第一,解决增加百分之几或削减百分之几的问题,如小明家2月份用电150千瓦时,3月份用电100千瓦时,3月份比2月份节约了百分之几?第二,解决比一个数增加或削减百分之几的数的实际问题,如妈妈在商场中看中了一件540元的风衣,按八折购置,能省多少元?第三,可以列方程解答问题,如小龙有63代的数码珍宝卡120张,比53代的数码珍宝卡多30%,小龙有多少张53代的数码珍宝卡?第四,能解决及储蓄有关的实际问题。在学问技能的评价中,要留意所选择的实际问题应结合学生的生活阅历,不仅要关注学生解决问题的结果,还要关注学生解决问题的思路和方法;还可以激励学生提出问题,评价学生提出问题的实力。教学案例研讨教学内容百分数的应用第1课时百分数的应用(一)教材分析本节课是在学生已学习百分数的简洁应用、运用方程解决简洁的百分数问题的根底上进一步学习百分数的应用。教材通过创设“水结成冰块”的情境,引发问题,让学生带着问题探寻解决的方法,从而真正理解增加百分之几,削减百分之几的意义并由此及彼的驾驭解决此类问题的方法。学习目的1、理解“增加百分之几”或“削减百分之几”的意义,加深对百分数意义的理解。2、能计算出实际问题中“增加百分之几”或“削减百分之几”。3、进一步体会数学及生活的联络,增加数学学习的主动性、主动性。教学设计(一)创设情境,提出问题1、视察表格,提出问题(1)师:这里有一份关于百大超市和国光超市七月份、八月份销售金额状况统计表。假如你是经理,看了之后,你能得到哪些信息?七月份八月份百大超市40万元50万元国光超市20万元30万元(设计说明:根据地区学生的特点,将“水结成冰块”的情境转换为超市销售金额增加百分之几,更接近本校学生的生活实际。“假如你是经理”能让学生更快地进入到情境之中,利于学生主动地去获得学问。)(2)同桌讨论(3)学生汇报(4)师:两个超市七月份的销售金额都比八月份有所增加,其增加的金额都是10万元,通过这个数据我们能说两个超市的增加幅度一样吗?(5)小组讨论(6)汇报:要比拟两个超市的增长幅度,必需进展第二次比拟,即百大超市八月份销售金额比七月份销售金额多百分之几?国光超市八月份销售金额比七月份销售金额多百分之几?(设计说明:教师以“通过这两个数据我们能说两个超市的增加幅度一样吗?”进展设疑,引导学生思索。提出问题,而学生所提问题正好是本节课要学习的学问点。)2、出示课题:百分数的应用(二)自主构建,探究新知1、解决“百大超市八月份销售金额比七月份销售金额多百分之几?”这一问题。(1)小组讨论,解决问题。提示:要求百大超市八月份销售金额比七月份销售金额多百分之几,就是要求谁是谁的百分之几?通过小组讨论,你们认为这道题应当怎样解答?生1:50÷40生2:(50—40)÷40生3:(50—40)÷50(2)学生评议,理清思路①学生评议时,引导他们画出线段图:②启发学生思索:“百大超市八月份销售金额比七月份销售金额多百分之几”,是哪两个量在比拟?③得出结论,列出算式:要求百大超市八月份销售金额比七月份销售金额多百分之几,就是求“百大超市八月份销售金额比七月份销售多的金额”是“七月份销售金额”的百分之几?列式:(50—40)÷40=10÷40=25%④引导学生说出第二种解法:师:还有别的算法吗?⑤沟通汇报:50÷40—1=125%—1=25%(结合线段图理解)(设计说明:通过小组合作沟通,让学生自已解决问题,使他们参及到学问的探究过程中去,培育了学生的合作意识和探究精神。)2、解决“百大超市七月份销售金额比八月份销售金额少百分之几”的问题。①提出问题:师:“同学们解决了自已提出的问题,教师也有一个问题,你们能帮教师解答吗?”生:能。师:“百大超市七月份销售金额比八月份销售金额少百分之几?”(设计说明:在学生提出问题,自已解决问题之后,教师适时提出问题,不仅表达了师生之间的同等关系,而且把学问进展了拓展。)②学生列式解答:生:(50—40)÷50=10÷50=20%③引导学生小结:被除数一样,但除数不同,多百分之几及少百分之几的结果是不一样的。㈢稳固应用、深化进步1、解决问题①国光超市八月份销售金额比七月份销售金额多百分之几?②国光超市七月份销售金额比八月份销售金额少百分之几?(1)列式解答:(30—20)÷20=50%(30—20)÷30≈33.3%(2)视察发觉:师:你认为解答的关键是什么?生:求百大超市八月份销售金额比七月份销售金额多百分之几,就是求“百大超市八月份销售金额比七月份销售多的金额”是“七月份销售金额”的百分之几?师:解决今日的问题关键在于把它转化成已经学过的问题。其实我们以前也运用过转化的方法,你还记得吗?生:上个单元学习圆的面积时,把圆转化成长方形来求的。师:转化的方法是我们学习、讨论数学的好方法。以后遇到难题时也可以用转化的方法试试。(设计说明:结合教学内容,教给学生学习的方法,既使学生驾驭了方法,又使学生能形成完好的认知构造。)2、做课本“试一试”第(1)题。学生自已读题,说一说几成是什么意思后独立完成。3、解决实际问题:师:据理解赣州为了迎接宋城文化节活动,正在大搞绿化工作,一个绿色的赣州将呈如今我们眼前。在叔叔、阿姨的绿化过程中遇到一个问题,你们想帮他们来解决吗?出示题目:赣州原支配造林12公顷,实际造林14公顷,实际比原支配多造林百分之几?原支配比实际少造林百分之几?4、小调查:⑴调查你家上个月和这个月用水、用电的量,并进展比拟,从比拟中你发觉了什么?⑵理解一下你班上同学零花钱的状况,并进展比拟,看看你能得到什么结论?(设计说明:练习的设计既有针对性,又能联络学生的生活实际,使学生刚好稳固了本节课所学的学问。)第2课时求一个数比另一个数多(或少)百分之几的练习课教学目的:通过练习使学生进一步娴熟地驾驭求一个数比另一个数的多(或少)百分之几的的应用题的解题方法;进步解答这类题的实力。教学重点:分析求一个数比另一个数的多(或少)百分之几的的应用题的数量关系。教学难点:解答这一类应用题的实力。教学过程:(一)明确本节练习课的内容和目的进一步理解解答这类应用题的关键是弄清谁是谁的百分之几,谁是单位“1”的量。(二)根本练习1.口答。5是4的百分之几?4是5的百分之几?5比4多百分之几?4比5少百分之几?2.只列式不计算。①张师傅一家去年人均收入6500元,今年人均收入增加了500元,增加了百分之几?去年人均收入是今年的百分之几?500÷65006500÷(6500+500)②张师傅一家今年人均收入7000元,比去年增加了500元,比去年增加了百分之几?今年人均收入是去年的百分之几?500÷(7000—500)7000÷(7000—500)学生列式后,师生进一步讨论:这两题分别是谁和谁比?谁是单位“1”(三)变式练习1.根据问句,说出谁和谁比,谁是单位“1”①松树棵数是柳树棵数的百分之几?②汽车速度比自行车速度快百分之几?③降价了百分之几?④增产了百分之几?⑤超过支配的百分之几?2.推断。(让学生用手势表示“√”或“×”)①因为5比4多25%,所以4比5少25%。()②100克水中加10克盐,盐占盐水的10%。()③玲玲已做对了45道口算题,还有5道没做对,那么正确率是90%。()3.选择正确算式。(用手势表示)(1)小明有故事书5本,小兰有故事书8本,小兰比小明多百分之几?()(2)购置同一刑号的电脑,今年售价0.8万元,去年售价1.2万元,今年售价比去年降低了百分之几?EQ\F(1.2-0.8,1.2);EQ\F(1.2-0.8,0.8);EQ\F(1.2,0.8)-1;1-EQ\F(0.8,1.25);(四)开展练习1.比拟每组中两道题的联络及区分,并列式。第一组:(1)甲数是50,乙数比甲数少10,乙数比甲数少百分之几?(2)甲数是50,乙数是40,乙数比甲数少百分之几?第二组:(1)某厂原支配消费200台机床,实际比支配多消费20台,实际比支配多消费百分之几?(2)某厂原支配消费200台机床,实际比支配多消费20台,实际消费的台数是支配的百分之几?2.根据算式补充问题。六(2)班有男生25人,女生23人,?(1)23÷25,?(2)23÷(23十25),?(3)25÷(23-+-25),?(4)(25—23)÷25,?(5)(25—23)÷23,?五)教学小结一个数是另一个数的百分之几的应用题的解题方法。第3课时百分数的应用(二)【教学内容】小学数学试验教材(北师大版)六年级上册第一单元P25-26内容。【教学目的】进一步相识“增加百分之几”或“削减百分之几”的意义,加深对百分数意义的理解。能解决“比一个数增加百分之几的数”或“比一个数削减百分之几的数”的实际问题,进步运用数学解决实际问题的实力,体会百分数及现实生活的亲密联络。【教学重点】理解“增加百分之几”或“削减百分之几”的意义,能解决有关“增加百分之几”或“削减百分之几”的实际问题。教学过程一、导入我国有一个特别闻名的科学家-----袁隆平,大家知道吗?(假如有学生知道,可以让学生说一说)他是我国杂交水稻讨论领域的创始者和带头人,也是世界上第一个胜利地利用水稻杂种优势的科学家,是结合国粮农组织国际首席参谋,被誉为“杂交水稻之父”。因为杂交水稻比一般水稻的产量要高很多,所以我国杂交水稻的种植面积一年比一年增加。二、百分数的应用1、生活中的百分数问题2000年某地在教水稻的种植面积为20万公顷,2001年的种植面积比2000年增加25%,2001年杂交水稻的种植面积是多少公顷?2、线段图 教师提出要求:你能用线段图表示出2000年和2001年之间的数量关系吗?学生独立画图展示学生的成果教师评价25%=1/4 20公顷2000年 25%2001年3、学生自主解答问题4、班内沟通方法一:20×25%=5(公顷) 20+5=25(公顷) 方法二:1+25%=125%20×125%=25(公顷)三、试一试1、生活中的折扣游乐场的套票原来每套30元,六一期间八折实惠,购置一套这样的套票能省多少元?思索:八折是什么意思?※学生自由发表自己的见解※教师评价※八折就是现价是原价的80%学生自主解答然后沟通方法一:30×80%=24(元)30-24=6(元)方法二:30×(1-80%) =30×20% =6(元)四、练一练五、课堂总结第4课时“比一个数增加(削减)百分之几的数”的练习课学习目的:通过练习使学生进一步娴熟地驾驭“比一个数增加(削减)百分之几的数”的应用题的解题方法;进步解答这类题的实力。重点:分析“比一个数增加(削减)百分之几的数”的应用题的数量关系。难点:解答这一类应用题的实力。根底练习先说出下面各题把什么数量看作单位“1”,再答复问题。一批钢材运走80%,还剩下百分之几?甲车速度比乙车快EQ\F(,)EQ\F(2,7),甲车速度是乙车的几分之几?练习1、(1)兴业公司今年支配创利450万元,上半年已完成了EQ\F(,)EQ\F(5,9)。上半年创利多少万元?(2)兴业公司今年支配创利450万元,上半年已完成了EQ\F(,)EQ\F(5,9)。下半年创利多少万元就能完成支配?2、(1)一种彩色电视机原价每台2400台,如今每台售价比原价提价10%,每台提价多少元?(2)一种彩色电视机原价每台2400台,如今每台售价比原价提价10%,如今每台售价多少元?3、食堂六月份用粮2500千克,七月份用粮比六月份削减EQ\F(2,25),七月份用粮多少千克?4、汽车销售市场上月原支配销售汽车850辆,实际比原支配多销售26%,多销售多少辆?三、文字题1、比24千克多50%是多少千克?2、比24千克少50%是多少千克?3、比4EQ\F(1,5)米多EQ\F(1,3)是多少米?4、比4EQ\F(1,5)米少EQ\F(1,3)是多少米?四、总结:这节课你有什么收获?五、作业第5课时百分数的应用(三)【教学内容】小学数学试验教材(北师大版)六年级上册第一单元P27-28内容。【教学目的】进一步加强对百分数的意义的理解,并能根据百分数的意义列方程解决实际问题。通过解决实际问题进一步体会百分数及现实生活的亲密联络。【教学重点】根据百分数的意义列方程解决实际问题。教学过程导入通过前面的学习,我们知道百分数及生活有着特别严密的联络。请同学们想一想,你能给大家说一些生活中用到百分数的事例吗?(让学生自由说一说)家庭消费下表是笑笑的妈妈记录的家庭消费状况:年份1985年1995年2005年食品支出总额占家庭总支出的百分比65%58%50%其他支出总额占家庭总支出的百分比35%42%50%你能给大家说说表格所表示的意思吗?根据表中数据,你有什么发觉?教师提出问题:1985年食品支出比其他支出多210元。你知道这个家庭的总支出是多少元吗?你准备怎样解答这个问题?(小组讨论)※你觉得干脆列式便利吗?为什么?展示解答过程解:设这个家庭1985年的总支出是X元。65%X-35%X=21030%X=210X=7006、假如2005年食品支出占家庭总支出的50%,旅游支出占家庭总支出的10%,两项支出一共是5400元,这个家庭的总支出是多少元? ※学生独立解决※教师评价下表是笑笑的妈妈记录的家庭消费状况:年份1985年1995年2005年食品支出总额占家庭总支出的百分比65%58%50%其他支出总额占家庭总支出的百分比35%42%50%三、试一试1、出示教科书P27试一试第2题2、九五折是什么意思?3、学生独立解答然后班内沟通解:设这本书的原价是X元。X-95%X=65%X=6X=120四、练一练教科书P28练一练第2题“增产了两成”是什么意思?展示解答过程:解:设去年的产量是X吨。X+20%X=36000120%X=36000X=300002、教科书P28练一练第4题3、教科书P28练一练第5题五、课堂总结第6课时“一个数的百分之几是多少,求这个数”的练习课教学目的:通过练习使学生进一步娴熟地驾驭“一个数的百分之几是多少,求这个数”的应用题的解题方法;进步解答这类题的实力。教学重点:分析“一个数的百分之几是多少,求这个数”的应用题的数量关系。教学难点:解答这一类应用题的实力一、根底练习先说说下面各题把什么数量看作单位“1”,再答复问题。(1)一种羊毛衫如今的单价比原来降低了EQ\F(1,8)。如今单价是原来的百分之几?(2)小云的邮票张数比小军少20%。小云的邮票张数是小军的百分之几?二、列式计算1、多少吨的EQ\F(7,12)是3.5吨?2、多少千米的50%是24千米?3、多少米的EQ\F(1,3)是EQ\F(5,6)米?4、多少千克的18%是6EQ\F(3,10)千克?三、1、修路队修一条路,已经修好24千米,占全长的40%,这条路长多少千米?2、甲村修一条水渠,已经修好80%,还剩下160米没有修。这条水渠长多少米?3、东东看一本科幻小说,第一天看了全书的10%,第二天看了全书的30%,两天共看了80页,这本书共有多少页?4、玩具厂五月份比四月份多消费儿童玩具2500件,多消费了20%。玩具厂四月份消费玩具多少件?四、总结:你有什么收获?五、作业第7课时百分数应用(四)教材分析本课时的内容是百分数的详细应用一个方面。教材设计这一内容宗旨是进一步进步学生运用百分数解决实际问题的实力。随着我国社会主义市场经济体制的建立,百分数应用日益广泛,使学生多理解一些百分数的应用可以进步学生应用数学学问解决简洁的实际问题的实力,通过这些实际问题还可以对学生进展思想品德教化。教材支配了调皮和笑笑储蓄的情境,他们存入300元到期后不仅能取回存入300元的本金,还能得到银行付出利息的一局部钱。在这一实际情景中,通过详细的事例,扶植学生理解什么是本金、利息和年利率。教材给出了整存整取的年利率,还有利息的计算公式,并激励学生利用公式实际计算一下笑笑和调皮分别得到多少利息。教材还涉及到了利息税,在实际生活中,国债和教化储蓄是不需要交利息税的。学习目的1、理解一些有关利息的初步学问,能利用百分数的有关学问,解决一些及储蓄有关的实际问题。2、学会合理理财,逐步养成不乱花钱的好习惯。教学设计㈠学生汇报调查资料,情景导入师:(课前布置学生到银行去调查年利率,理解有关储蓄的学问。)昨天同学们到银行去做了一个小调查,请你汇报调查的状况。生1:我知道了中国建立银行、中国人民银行、中国农业银行以及农村合作信誉社等等都是我们日常生活中进展储蓄的场所。生2:我知道储蓄不仅可以扶植国家进展经济建立,而且能增加家庭个人的收入。师:说的真好。这是储蓄的优点,储蓄能支持国家建立。生3:我知道储蓄分活期和定期两种。在定期存款方式中,又可以分为零存整取和整存整取两大类。师:你说的是储蓄的种类。(板:储蓄的种类:零存整取、整存整取)生4:我调查到定期一年的利率是2.52%,定期二年的利率是3.06%,定期三年的利率是3.69%,定期五年的利率是4.14%……生5:我们调查了存款的年利率(投影展示)存期(整存整取)年利率%一年2.25二年2.70三年3.24四年3.60生6:我调查到存款要交利息税,另外教化储蓄不用交税。生7:把钱存入银行,取出来的还有银行要多付的一些钱。师:这些多出来的一局部钱有个专出名词叫什么?生8:我知道是利息。师:利息就是取款时银行所多支付的钱。生9:我还知道利息的计算方法,利息=本金×期限×利率师:真不错!你还知道了利息的计算方法。生10:我还知道支付方式。有现金支汇票支付。生11:我知道在储蓄之前必需先填写存款单,而且每个银行的存款单都不一样的。生12:我知道存款时必需要写清晰种类,你存的是人民币还是其他种类。师:同学们真了不得,理解了这么多。听到你们的汇报,教师了增长了很多学问。这节课你们想进一步讨论哪些方面的学问?生1:取钱的方法。生2:关于利息税的问题。生3:有关利息怎样计算?生4:怎样进展抵押贷款?生5:票汇是怎样进展的?……师:综合大家的意见,看来同学们对利息及利息税有比拟深厚的学习爱好,好,我们今日就来讨论有关利息及利息税方面的问题。(板书:利息;利息税。)[评析:教师在课前让学生到银行搜集有关储蓄的学问,既培育了学生搜集信息的实力,使学生亲身感受到数学就在自己的生活中,又为引入新课,激发学生沟通的欲望,进一步互动探究新知起到了很好的作用。]㈡探究新知1、小组讨论师:我们先来讨论利息及利息税的问题,在小组讨论的根底上,再进展全班的沟通。(学生小组沟通、教师参及小组的讨论。)师:把你们讨论的结果全班沟通。生1:利息是把钱存入银行后,取出时多出的局部就是利息。比方2004年存入银行200元,到2005年就会得到200元多一些,多出的钱就是利息。生2:利息越多,利息税就越多。生3:我知道利息是怎样计算的:利息=本金×年限×利率2、举例探究师:教师知道同学们过年的时候,得到了一些压岁钱,你觉得怎样处理这些压岁钱呢?生1:当然是存到银行了。师:是啊!存到银行不但能支援国家建立。到期还能得到利息。根据存款的种类和时间的长短,利率是不一样的。咱们就以笑笑的300元为例,假如你有300元钱,准备怎样存款,你是怎么想的?生2:我想存三年整存整取,时间长一些利息就会多的。生3:我存一年的整存整取,假如时间太长,需要用钱时取出来,就按活期存款计算利息了,那样利息就少了。师:你们知道的真多,活期存款的利率低一些。师:同学们想得很周到,我们存钱时应当根据自己的实际状况,确定怎样存。我们来看看调皮和笑笑说了什么吧。(出示课件:笑笑、调皮的压岁钱各得到300元,笑笑说:“我想存一年,整存整取。”调皮说:“我想存3年,整存整取。”)师:刚刚同学们说的存款方式,到期后利息原委是多少呢?我们一起来计算。(教师给出计算利息公式:利息=本金×期限×利率,并给出年利率表,学生小组合作计算300元存一年和三年整存整取的利息)。3、小组汇报存一年:存三年:300×2.25%×1300×3.24%×3=6.75(元)=29.16(元)4、刚好反应师提问:(以存一年为例),在这里300元表示什么?2.25%呢?1又表示什么?学生逐步答复后,教师接着追问:6.75又表示什么?生:6.75表示存一年得到的利息。师强调:300元就是存入银行的钱,叫做本金。(板:本金)2.25%是年利率(板:年利率)一年是期限(板:期限)最终用本金×年利率×期限就能得到利息。师边强调边整理好利息计算方法的公式。(板:利息=本金×年利率×期限)师:6.75元就是300元存一年所得到银行付给笑笑的利息。教师再让学生以前面的说法为例,同桌相互说说存三年:300×3.24%×3=29.16(元)中的3.24%、300、3、29.16各表示什么。生:300表示本金,3.24%是存三年的年利率,3表示三年,29.16元是存三年所得到的利息。5、利息税课件出示你知道吗?你知道吗?从1999年11月1日起师:纳税是我们每个公民应尽的义务,按个人在银行所得到利息的20%纳税,请你算算,调皮和笑笑各应交多少利息税。笑笑:6.75×20%=1.35(元)调皮:29.16×20%=5.832(元)师:那笑笑和调皮最终真正能得到的利息是多少元呢?生计算:6.75-1.35=5.4(元)29.16-5.832=29.16-5.83=23.33(元)(设计说明:在开展这一步骤的教学时,应当留意提示学生:我们现行的钱币面值最小是以分为单位,所以5.832要采纳四舍五入法,近似成5.83计算)6、拓展师引导学生在计算调皮和笑笑最终得到的利息时,还能利用什么方法更快算出得数,引导学生讨论出。存一年:300×2.25%×1×80%=5.4(元)存三年:300×3.24%×3×80%=23.33(元)7、指导学生完成书上的小调查。8、小练习。小明的爸爸准备把5000元存入银行(两年后用),他如何存取才能得到更多的利息?[设计说明:这是一个具有挑战性的实际问题,解决时需要用到上面调查的利率。教师首先可以引导学生思索存两年有多少种存法,然后直观估计一下哪种存法的利息多,再实际计算,可以激励学生进展全班沟通。][评析:教师留意学问的逐步形成过程,以学生在生活中搜集的有关存取方式,利息等学问和在银行存取钱的阅历作为支点,先让学生计算不同年限的利息,再引出利息和利息税的计算问题,最终让学生计算出税后利息。这样教学层次清晰,相关学问点也得到明晰。同时教师在储蓄的意义上对学生进展了思想教化。]㈢延长练习(教师课件出示)1、李教师把2000元钱存入银行,整存整取5年,年利率是3.60%,利息税率为20%。到期后,李教师的本金和利息共有多少元?李教师交了多少利息税?[明确什么时利息以及利息的计算公式。先求出利息=2000×3.60%×5=360(元),本金和利息的总和为2000+2000×3.60%×5=2360(元),李教师交的利息税为360×20%=72(元),李教师实得利息为360-72=288(元),这里实得利息是扣除利息税之后的局部。]2、小华把得到的200元压岁钱存入银行,整存整取一年。她准备到期后将钱全部取出捐给“盼望工程”。假如按年利率2.25%计算,到期后小华可以捐给“盼望工程”多少钱?[评析:该练习题的设计既稳固了所学学问,又在例题的根底上提出了计算到期后本金和利息的的问题,又让学生在计算生活中的问题时,不知不觉中受到思想道德教化,珍惜如今的学习时机,支援贫困地区的失学儿童。]㈣稳固新知、升华练习(教师课件出示)甲乙两个品牌的语言学习机(甲标价370元,乙标价315元),出示情境:兰兰将350元人民币存入银行,整存整取2年期。银行整存整取2年期的利率是2.70%,两年后,他能买哪个品牌的学习机?(学生计算后全班进展讨论。要先计算出2年后的本金和利息时多少,然后再比拟,确定可以买哪个品牌的语言学习机。350×2.7%×2×(1-20%)+350=365.12(元),能买乙牌语言学习机。][评析:此练习题的设计浸透了用数学比拟的方法解决问题,这样教师不仅留意到稳固好所学学问,还留意到对学生数学方法运用的教学,到达学问及方法的统一。]㈤嬉戏活动师:如今每个小组都有一些百元的钱币,每个小组自行商议选出两个“银行工作人员”,另外两名学生当储户,让他们到喜爱的“银行”存上钱,两名工作人员可根据期限、本金、年利率算出储户的利息是多少元。每两名同学交换互玩一次。[评析:嬉戏的设计以一个模拟的存钱情境,让学生能有时机用口表达本金、年利率、利息等词汇,又把百分数计算的学问在生活中详细化、生动化,进步了学生实际应用的实力,起到了学问及实际应用相结合的目的。]㈥小结:第8课时百分数的应用(四)的练习课教学目的:1、进步分析分数(百分数)乘法应用题数量关系的实力,并能比拟娴熟地解答分数(百分数)乘法应用题。2、增加学生依法纳税的法律意识教学重点:利息和税款的计算教学难点:对所涉时间的理解教学关键:稳固学问揭题师:这节课我们接着讨论分数(百分数)应用题。根本练习复习:说说什么叫做利息、本金、利息税?求利息和利息税怎么求?练习试一试:这是一个富有挑战的实际题目,先课前引导学生调查银行最近的利率。提问:两年有多少种存法,然后让学生估一估哪种存法的利息多,最终实际计算。综合练习1、第30页练习1---3生独立解答,反应。介绍自己的解题思路、分析数量关系。校对2、编题师:请根据自己的实际状况,编写一道类似的应用题。生独立编写应用题,并进展沟通,评价。并根据所编的应用题进展解答。总结这节课有何收获?五、作业设计第9课时练习二【教学内容】北师大版小学数学第十一册P31-33【教学目的】通过练习,加强百分数的应用,能综合运用所学学问,解决问题。进一步理解和驾驭百分数的意义。【教学重点】进一步进步学生运用百分数解决实际问题的实力,体会数学及日常生活的亲密联络。谈话引入。同学们,我们学习了百分数的应用,如今来看看遇到这些问题,你会不会用所学学问去解决。根底练习P31练习二和第1题让学生先填表,然后指名说得数,集体订正。第2题解方程,选择几题有代表性的题目,及学生一起讨论解题的方法。练习二第3题10月份比9月份节约用水百分之几是什么意思?需要知道什么量?练习二第4题学生自主完成,集体订正师:什么叫孵化率?孵化率是95%是什么意思?不能孵出的占单位“1”的百分之几?1-95%=5%2400×5%=120(只)练习二第5题先说题意,再独立完成。集体订正进步练习。1、(自主学习天地)请学生完成“才智树”的题。再分题集体订正,并说出解题思路。2、课本练习二第11题先让学生看统计表分小组讨论完成题目指名小组代表解答。3、P33思索题师:要想知道哪个超市买更合算,先得求出分别到甲、乙超市买5瓶油的价格,再进展比拟。甲:12×4=48(元)买四送一,只需花4瓶的价格就可以买到5瓶油。乙:12×5×0.85=51(元)每瓶12元,八五折师:八五折是什么意思?比拟:48<51所以选择去甲超市先让学生自主选择比拟,再选择去哪个超市合算。4、练习题(出示课件)学生独立完成。第二单元圆柱、圆锥单元教学支配
教材分析:
教材内容
本单元教材内容有:圆柱和圆锥的相识,圆柱的外表积、圆柱的体积和圆锥的体积,球的相识共三小节。这局部学问是在学生驾驭了长方体、正方体和圆的有关学问的根底上进展教学的,是小学阶段学习几何学问的最终一局部内容。
圆柱这局部学问,教材通过直观手段,对常见的几何形体实物的视察,并从实物中抽象出圆柱体的特征,使学生的相识建立在直观形象的感知根底上,而后再通过学生动手操作,试验演示驾驭它的特征。教学圆柱体的外表积的计算时,教材通过试验推出圆柱体外表积的计算方法,并通过实际生活例子,让学生解决一些问题,并介绍“进一法”。教材在教学圆柱体的体积时,通过拼的方法推异出圆柱体体积的计算公式。教材留意在理解的根底上,通过圆面积公式的推异方法引出圆柱体体积的计算公式。
本单元教材在教学圆锥的相识时,也是通过对常见的圆锥的视察,引异学生相识并驾驭圆锥体的特征,通过制作一个圆锥,进一步稳固、深化。在教学圆锥的体积时,通过试验的方法,推异出圆锥体体积的计算公式。
本单元第三小节是球的相识。它是新的学问,也是选学内容。教材通过实际例子引异学生视察,相识球的形态和根本特征,再通过实际相识“球的直径都相等”,“直径的长度是半径的2倍”等。通过视察地球仪,让学生计算赤道的长度,初步理解球的一些实际应用。教学球的相识时,最好要利用直观手段进和教学。学好这局部学问为中学学习打下良好的根底。
本单元教材的重点是圆柱体体积的计算。教学量,要充分利用教具、电教媒体,通过反复演示、试验、操作,提醒公式推异的过程,展示学问间内在联络,让学生驾驭计算公式,培育学生解决问题的实力。
教学重难点、关键:
1、重点:圆柱体体积的计算。
2、难点:(1)圆柱体体积计算公式的推导。
(2)解答有关圆柱体实物外表积的实际问题。
3、关键:充分运用直观教具,进展拼板演示和试验,有目的、有步骤地引导学生视察、思索,推导出计算公式和有关概念。
教学要求:
1、使学生相识圆柱和圆锥,驾驭它们的特征;相识圆柱的底面、侧面和高;相识圆锥的底面和高。
2、使学生理解并驾驭求圆柱的侧面积、外表积的计算方法,并能计算有关的实际问题。
3、使学生理解和驾驭求圆柱、圆锥体积的计算公式,会运用公式计算它们的体积、容积;解决有关的简洁实际问题。
4、通过学生自己动手操作、视察、比拟、分析、推断推理,培育学生空间观念,进步空间想象实力和逻辑思维实力。
5、使学有余力的学生初步相识球,知道球的各局部名黍以及半径及直径的关系。
第1课时:圆柱的相识
教学内容:圆柱的相识、圆柱的特征、底面、直径、半径、高、侧面及绽开图。
教学目的:使学生相识圆柱,理解圆柱体各局部名称,驾驭圆柱体的特征。
教学重点、难点:理解并驾驭圆柱体的特征。
教学过程:
一、导入新课
师出示名种实物和模型。问:这些形体中,哪些是我们已学过的?我们学过的正方体,长方体都是由平面围成的立体图形。今日开场我们再来讨论一种立体圆形――圆柱。像这些物体的形态都是圆柱体,简称圆柱。
二、新授
1、让学生举出日常生活见到的圆柱体。
2、相识圆柱各局部名称。
(1)教师指着一个圆柱模型,边引导学生视察边板书:
(2)面:圆柱上、下两个面叫做圆柱的底面,它们是完全一样的两个圆。再用手摸一摸圆柱四周的面,你发觉什么?
(3)高:圆柱两个底之间的间隔叫做圆柱的高,高在哪里?(师出示图说明)高有几条?(多数条)
提问几个学生复述圆柱体各局部名称。
3、相识并驾驭圆柱体的特征。
(1)底面:师将圆柱两个度面分别画在纸上剪下重叠比拟大小,让这生进一步明确第一个特征:圆柱上下两个底面是面积相等的两个圆。(板书)
(2)让这生把罐头盒或饮料罐等的商标纸用小刀沿着它们的一条高切开,再翻开,看看商标纸是什么形态。让学生视察发觉圆柱的第二个特征;圆柱的侧面绽开是一个长方形,这个长方形的长等于圆柱底面的周长,宽等于圆柱的高。(板书)
(3)师通过讲解使学生相识圆柱的第三个特征:同一个圆柱两底面之间的间隔到处相等。(板书)
4、练习:“做一做”第1、2题。
5、指导学生相识圆柱的立体并学会画图。
(1)教师出示一个圆体模型,让学生由正面看底面,渐渐挪动,(使学生看究竟面由圆型变成扁圆形,)教师指出:这主要是因为我们视线的关系。有时,我们看到的圆柱底面不是圆形的而是扁圆形的。根据美术上的透视原理,圆柱的两个底面画在平面图上,一般都画成扁圆形的。
(2)教师画立体图,请学生指出各局部名称,然后教师板书各局部名称,强调高有几种不同表示方法,有时也叫长、厚、深。
(1)让学生练习画各种位置的圆柱体立体图,并标出各局部名称。
三、全课总结
1、提问:圆柱体各局部名称是什么?圆柱有哪些特征?
2、指导看书第31、32页的内容。
3、思索:圆柱体的侧面绽开后还会出现其他什么图形吗?假如会,那是什么图形?这些图形的各局部及圆柱的有关局部关系怎样?
四、课内外作业:
完成第32页的“做一做”的第3题,及练习七的第1题。
第2课时:圆柱的侧面积和外表积的计算
教学内容:圆柱的侧面积和外表积的含义及计算方法。
教学目的:使学生理解圆柱体侧面积和外表积的含义,驾驭计算方法,并能正确地运用公式计算出圆柱的侧面积和外表积。
教学重点、难点:理解和驾驭求圆柱外表积的计算方法。教学过程
一、复习
1、口算2、d=4厘米
C=?
S=?
R=5分米
C=?
S=?
3、口答:圆柱体的各局部名称和特征。
二、新授
1、引导
上一节课我们已经相识了圆柱体以及圆柱体的特征,还制作了圆柱体纸筒,如今请大家拿出来看看谁做的最好。今日我们就是要讨论圆柱体外表保个局部大小的计算。
2、圆柱体侧面积计算公式的推导。
教师手拿教具边演示边讲解,我们先来看圆柱的侧面,假如我们都把圆柱的侧面绽开,大家发觉圆柱的侧面绽开后是什么形态呢?这个侧面绽开后的长方形面积及圆柱侧面的面积的关系怎样呢?那么求圆柱的侧面积只要求谁的面积?这个长方形的长相当于圆柱哪一局部的长度?宽相当于哪一局部的长度?圆柱的侧面积应当怎样求?
同学们能不能根据这两个关系,再根据长方形面积公式推出一个圆柱的侧面积的计算公式。
教师边问边板书如下:
长方形的面积=长×高
圆柱的侧面积=底面周长×高
最终请几个学生口述侧面积计算公式推导过程。
3、尝试练习
(1)请同学运用刚刚学到的计算公式解答下题:
例1:一个圆柱、底面直径是0.5米,高是1.8米,求它的侧面积?
学生审题后,让两个学生板演,其它学生练习。
(2)讲评后问:假如已知圆柱底面周长或半径及高,能不能求圆柱的侧面积?计算公式怎样?
4、圆柱外表积的计算方法。
(1)请学生拿出自己准备的圆柱的学具,并把外表全部的纸取下,问:把圆柱外表的纸全部取下后,这里一共有几个面?哪几个面?那么圆柱体外表积应包括哪些面的面积?在学生答复根底上教师归纳板书:圆柱的侧面积+两个底的面积=圆柱的外表积。
问:要求圆柱外表积要先求哪些面的面积?
(2)圆柱外表积公式应用。
(1)出示例2。一个圆柱的高是15厘米,底面半径是5厘米,它的外表积是多少?
学生审题后尝试练习,要求分步列式,指名板演。解答完后及课本比照。最终师讲评,强调题步骤及书写格式,同时提问:为什么78.5要乘以2?假如不乘以2,求出的是什么的面积?
5、圆柱外表积的实际应用
(1)出示例3,一个没有盖的圆柱形铁皮水桶,高是24厘米,底面直径是20厘米,做这个水桶要用铁皮多少平方厘米?
(2)学生读题,审题后提问:题目中咎告知我们哪些条件?没有盖说明这个水桶少了哪个面?剩下几个面?题目要求什么?要求用铁皮多少平方厘米就是求这个圆柱形水桶哪几个面的面积?
(3)学生尝试练习,个别板演。
(4)师讲评:这里的底面积为什么不乘以2?要留意运用“≈”号。这里为什么要运用约等号?
(5)讲解“进一法”的意义及运用范围。(课本第34页)
三、稳固练习四、深化练习
第3课时:圆柱的体积计算
教学内容
圆柱的体积计算公式的推导。
教学目的
使学生知道圆柱体体积公式的推导过程,理解并驾驭求圆柱体体积的计算公式,并能正确地应用公式计算圆柱体积。
教学重点
圆柱体体积计算公式。
教学难点
圆柱体割拼组合教具。教学过程
一、复习
1、求下面圆的面积。
(1)r=3分米
(2)d=4厘米
(3)c=12.56分米
S=?
S=?
S=?
2、口答下面用字母表示的公式。
S圆=
S长=
S正=
V圆=
V长=
3、求正方体及长方体的体积都可以用一个统一的计算公式来表示,这个计算公式是什么?在正方体中,这个公式的S底及高各表示什么?在长方体中各又表示什么?
二、新授
1、引新
我们已经学过求正方体及长方体的体积计算方法,并且知道都可以用底面积乘以这个高这个统一的公式来进展长方体和正方体体积计算,那么这个统一的计算公式是否也能用来求圆柱体的体积呢?今日我们一起来讨论如何计算圆柱体的体积。
2、圆柱体体积计算公式的推导。
(1)出示教具问:要求这个圆柱体积就看它包含有多少个体积单位,假如用体积单位去测量吗?怎么办呢?想一想:学习计算圆的面积时,是怎样把圆变成已学的图形再计算面积?能不能把圆柱转化成我们已学过的立体图形来计算它的体积?
(2)边讲解边演示
(1)把圆柱的底面平均分成16个扇形,纵切后先分成相等的两局部,再把这两个局部拼起来,成为一个近似的长方体。
(2)然后提问:把圆柱割拼成了什么物体?为什么说是近似的长方体?拼成后的长方体体积及原来圆柱体的体积的大小关系怎样?底面积大小关系怎样?高的大小怎样?你能根据这些关系,推出圆柱体体积的计算公式吗?你能根据这些关系,推出圆柱体体积的计算公式吗?
师生共同推导出计算公式:
板书如下:
长方体体积=底面积×高
圆柱体体积=底面积×高
假如用字母S表示底面积,H表示高,V表示体积,那么圆柱体体积公式用字母怎样表示?
请几个学生讲解并描述公式推导过程。
问:要求圆柱体的体积应当知道什么条件?假如已知圆柱底半径和高,怎样求圆柱的体积?假如是已知圆柱的底直径和高,怎样求圆柱的体积?
小结:求圆柱的体积,一般要求底成积,再求体积。
3、公式应用
出示例4。一根圆柱形钢材,底面积是50平方厘米,高是2.1米。它的体积是多少?
学生尝试练习,个别板演。
师评讲后问:假如把“底面积是50平方厘米”改为“底面半径是5厘米”,该怎样求圆柱的体积?
学生再尝试练习后,师评讲。接着再问:假如再改为“底面周长是314厘米”怎样求圆柱的体积?
总结:
已知圆柱底面半径或周长及圆柱的高,要求圆柱的体积,应当要先求什么?再求什么?想一想:假如已知圆柱底面的半径R和高H,圆柱体积的计算公式字母表示是(
)
三、稳固练习四、课内外作业
第4课:圆柱体容积的计算
教学内容
圆柱体容积的计算。
教学目的
使学生会运用圆柱体积的计算公式,计算圆柱形水桶的容积。并能运用公式解决有关的实际问题。
教学重点、重点:
理解并驾驭圆柱体的体积计算公式。理解容积的概念,驾驭求容积的方法。教学过程
一、复习
1、提问:怎样求圆柱体的体积。
2、求下面各圆柱的体积。
(1)底面积是9.42平方分米,高是5分米。
(2)底面直径8厘米,高5厘米。
(3)底面周长6.28分米,高10分米。
二、新授
1、引出
出示圆柱形水桶教具,然后倒入红色或蓝色的水至满,提出:这个圆柱形水桶内全部的水的体积,就叫做这个圆柱形容器的容积,今日这节课我们就学习“圆柱体的容积”。怎样求圆柱体的容器的容积呢,下面我们一起来讨论学习。
2、出示例5,一个圆形水桶,从里面量底面直径是20厘米,高是25厘米。这个水桶的容积是多少立方分米?
学生读题后问:
(1)题目为什么要告知我们从里面量?
(4)求水桶的容积可以用什么方法求?
(5)先求什么,再求什么?
学生尝试练习,个别板演。练后评讲,强调:水桶的容积就是水桶能包容物体的体积。水桶的底面积题中没有干脆给出,因此先要求水桶的底面积,再求水桶的容积。
三、稳固练习
1、完成“做一做”的第2题。
2、一个圆形水桶,从里面量底直径3分米,深4分米,这水桶容积是多少立方分米?能装水多少千克?
练习后,教师总结:
(1)单位要统一。
(2)在以后计算容器里所放物体重量时,一般采纳“去尾法”。
(3)计算水或其他装在容器里的物体的重量,可以用单位体物体的重量及容积或体积相乘。
(4)水的单位体积重量要熟记:1立方米水重1吨,1立方分米水重1千克,1立方厘米水重1克。
(5)假如是计算一个物体的重量时,一般用“四舍五入”法。
四、课内外作业
第5课时:圆柱体外表积和体积的综合练习
教学内容:圆柱体体积的综合练习。
教学目的:使学生进一步娴熟驾驭求圆柱体外表积和体积的方法,并能根据实际状况运用计算公式4解决一些实际问题。
教学重点、难点:公式的敏捷运用。教学过程
一、点明课题:圆体外表积和体积的练习。
二、根本练习
1、一个圆柱体侧面积是62.8平方厘米,底面积是12.56平方厘米,它的外表积是多少平方厘米?
2、一个圆柱体底面半径5厘米,高20厘米,它的外表积是多少平方厘米?体积是多少立方厘米?
3、一个圆柱体的底面周长是31.4平方分米,高8分米,它的外表积和体积各是多少?
引导学生弄清求外表积及求体积的区分。
4、选择题
(1)一只水桶能装水多少升是求水桶的(侧面积、外表积、容积、体积)
(2)做一只圆柱体的油桶,至少要用多少块铁,是求油桶的(侧面积、外表积、容积、体积)
(3)做一节圆柱形的通风管,要用多少铁,是求通风管的(侧面积、外表积、容积、体积)
(4)求一段圆柱形钢条有多少立方米,是求它的(侧面积、外表积、容积、体积)
练习后引导学生区分侧面积、外表积、容积、体积这四种不同概念。进一步弄清它们的含义。
三、深化练习
1、推断题:对的打“√”,错的打“×”。
(1)两个圆柱体的侧面积,它们的体积肯定相等。………………(
)
(2)两个圆柱底面积和高分别相等,它们体积也相等。…………(
)
(3)圆柱风光 积和高都扩大2倍,体积就扩大4倍。……………(
)
(4)一个圆底面周长和高都扩大2倍,体积就扩大4倍。………(
)
2、一个圆柱体积是94.2立方厘米,底面直径4厘米,它的高是多少厘米?
3、一个圆柱侧面积是282.6平方厘米,高是9厘米,它的体积是多少立方厘米?
4、一个圆柱形水池底面直径8米池深2米,假如在水池的底面和四周涂上水泥,涂水泥的面积有多少平方米?水池修好后最多能放多少立方米?
5、练习八的第14题:教师要准备一个实物教具,结合课本图,比照教具让学生视察,使学生明确钢管的体积就是大圆柱的体积减去中间一个小圆柱的体积剩下的体积。也可用环形面积乘以钢管长度。
6、练习八和第15题:先求粮食的总体积;再求剩下的粮食体积;最终求需要运的次数。
四、总结练习中存在问题。
五、课内外作业
第6课时:圆锥的相识
教学内容
圆锥的特征及局部名称。
教学目的
使学生相识圆锥,驾驭它的特征,学会测量圆锥的高。
教学重点、难点
对圆锥的特征的相识,及侧面绽开图。
教具准备
圆锥模型,学惹事先按课本后面的图样做一个圆锥模型。搜集一些圆锥形的实物;投影。
教学过程
一、相识圆锥的特征
出示实物,沙堆等,让学生视察:这些物体的形态有什么特征?
二、测量圆锥的高
1、先把圆锥的底放平。
2、用一块平板程度地放在圆锥的顶上面。
3、竖直地量出平板和底面之间的间隔
4、学生练习测量自己制作或搜集来的圆锥模型或实物的高和底面直径。
三、圆锥侧面绽开图:把圆锥模型的侧面绽开,让学生视察是一个什么样的图形,进一步相识圆锥的特征。
四、指导学生学画圆锥立体图。
1、先画一个等腰三角形。
2、再画圆锥的底面。
3、标出圆心、直径、画出高。
五、稳固练习六、总结
一个圆锥的底面是个圆,它的侧面是一个曲面,从圆锥的顶点究竟面圆心的间隔是圆锥的高,圆锥的高只有一条。
七、作业
第7课时:圆锥的体积计算公式
教学内容
圆锥的体积计算公式。
教学目的
知道圆锥体积公式的推导过程,理解并驾驭体积公式,能运用公式求圆锥的体积,并会解决简洁的实际问题,对学生进展辩证物主启蒙教化。
教学重点
圆锥体积的计算公式
教学难点
圆锥体积公式的推导。教学过程
一、复习
1、口答圆柱体积计算公式。
2、计算下面各圆柱的体积。
(1)底面积是6.28平方分米,高是5分米。
(2)底面半径是2分米,高及半径相等。
(3)底面直径6厘米,高5厘米。
(4)底面周长6.28分米,高2分米。
小结学生练习状况。
二、新授
1、点明课题:锥体积的计算
2、全积公式推导
(1)要讨论圆锥的体积,你想提出什么问题?
①圆锥的体积及什么有关?有怎样的关系?
②为什么有这样的关系呢?
(2)出示教具让学生视察圆锥体积及底面积,高有关系。
①要讨论圆锥的体积需转化成已学过的物体积来计算。
②试验
(1)出示底等高的圆锥容器教具视察特征:等底、等高。
(2)教师示范用空圆锥装满沙往空圆柱里倒,让学生视观察看倒几倒满圆柱。
(3)得出结论:圆锥体积等于这个圆柱体积的1/3。
(4)教师再一次试验。
(5)学生动手试验:先做等底等高的试验,再做不等底不等高的试验,然后提问:圆锥体积都是圆柱体积的1/3吗?为什么?
3、学生讨论试验状况,汇报试验结果。
4、推导出公式
5、练习(口答)
(1)一个圆柱体积是27立方分米,及它等底等高的圆锥体积是多少立方分米?
(2)一个圆锥体积是150立方厘米,及它等底等市的圆柱体积是多少立方厘米?
突出强调:“等底等高”这一前提下圆柱及圆锥的体积关系。
6、运用公式
(1)出示例1。一个圆锥形的零件,底面积是19平方厘米,高是12厘米。这个零件的体积是多少?
学生尝试练习,教师讲评。
(2)出示例2。在打谷场上,有一个近公似于圆锥形的小麦堆,测得底面直径是4米,高是1.2米。每立方米小麦约重735千克,这堆小麦大约有多少千克?
学生读题思索片刻后问:要求小麦重量需先求出什么?要求体积需知道什么?然后学生尝试练习,个别板演,练习后评讲。
三、稳固练习
课本第43页的“做一做”第1、2题。练习后评讲。
四、小结:今日这节课,你学到了什么学问?要求圆锥的体积需要学问哪些条件?
第8课时:圆锥体积稳固练习课
教学内容
圆锥体积的稳固练习。
教学目的
使学生进一步驾驭求圆锥体积的计算公式,能娴熟应用圆锥体的体积计算公式解答有关求圆锥体体积的实际问题,进步学生解答实际问题的实力。
教学重点、难点:公式运用教学过程
一、根本练习
1、一个圆柱底面积是6.28平方分米,高3分米,及它等底等高的圆锥的体积是多少?
2、一个圆柱底面直径12厘米,高5厘米,和它等底等高的圆锥体积是多少?
3、一个圆锥的底面周长是9.42米,高1米,圆锥的体积是多少?
4、一个圆锥底面直径是4厘米,高是5厘米,和它等底等高的圆柱体积是多少?
二、综合练习
1、一个圆锥形麦堆,底面周长9.42米,高1.2米,假如每立方米小麦重740千克,这堆小麦约重多少千克?
2、一个圆锥形,底面直径4厘米,高10厘米,每立方百米重7.8克,这个圆锥重多少千克?
学生练习后,教师讲评,强调留意点。
三、深化练习
1、一个圆柱底面积是314平方厘米,高8厘米,一个圆锥和它体积相等,底面积也相等,这个圆锥的高是多少?
学生读题后问:这道题求圆锥的高,要知道什么条件?圆锥的体积,底面积及圆锥什么关系?怎样求圆锥的高?
引导学生用方程及算术两种解法,然后比拟得出:
当一个圆柱和一个圆锥体积相等,底面积也相等时,圆锥的高是圆柱高的。
2、练习九的第10题:先求底面半径31.4÷3.14÷2=5(厘米)
再求体积×3.14×5×5×9=235.5(立方厘米)
3、练习九的第11题:抓住底面积相等这一条件,用方程解:设圆柱的高为X厘米,则6/X=1×3/4.8
X=9.6
4、练习九的第12题:先求圆锥体积,再求圆锥体积,然后把两个结果相加。
四:课内外作业
第9课时:圆柱、圆锥
复习内容
圆柱、圆锥和球的特征,圆柱的侧面积、外表积、体积、圆锥的体积、
复习目的
使学生系统驾驭圆柱和圆锥的根底学问,进一步驾驭圆信和圆锥的关系,能正确地解答圆柱和圆锥人关问题。驾驭球的特征。
复习重点、难点:公式的混合运用复习过程
一、宣布复习内容:圆柱、圆锥和球的有关学问。
二、圆柱和圆锥各有哪些特征?球有哪些特征?怎样求圆柱的侧面积、外表积、体积?各
用字母表示计算公式。怎样求圆锥的体积?用字母表示计算公式。圆柱和圆锥的体积之间有什么关系?
三、口答:
1、一个圆柱和一个圆锥等底等高,圆柱体积是圆锥体积的(
),圆锥体积比圆柱少(
)。
2、一个圆柱、一个圆锥和一个长方体,它们的底面积和体积分别相等,那么长方体的高及圆柱的高(
),长方体的高是圆锥高的(
)。圆锥的高是圆柱高的(
)。
3、圆柱底面半径扩大2倍,高不变,则圆柱侧面积比原来增加了(
)倍,圆柱体积比原来增加(
)倍。
五、练习
1、用一个长、宽分别是6厘米、5厘米、4厘米的长方体木加工成一个最大的圆柱体,圆柱体的底面积是_____,体积是_____。
2、把一根长5分米的圆柱形木头截成三段,外表积增加12平方分米,这根圆木头原来的体积是_____。
六、课内外作业。
第10课时:圆柱和圆锥的实际应用稳固练习
复习内容
圆柱和圆锥的实际应用及稳固练习。
复习目的
使学生可以应用圆柱和圆锥的有关学问,解答实际问题,进步学生综合解题和应用实力。
复习重点、难点:理解题意,弄清公式。复习过程
一、宣布复习内容:圆柱和圆锥的实际应用
二、根本练习
1、一个圆柱形铁皮罐头盒,求需要多少铁皮,是求它的(
);罐头盒四周要贴商标纸,求商标纸的面积是求它的(
);求罐头盒可以装多少东西,是求它的(
)。
2、一个圆柱形有盖玻璃杯,从里面量底面直径20厘米,高是40厘米,假如装满水,可装水多少千克?
3、要制一节圆柱形通风管,直径5分米,长8分米,需要多少平方分米的铁皮?
4、制一对无的盖的圆形铁皮水桶,底面直径4分米,高6分米,至少需要铁皮多少平方分米?
三、综合练习
1、一个圆柱形汽油桶,从里面量底面直径6分米,深8分米,这个油桶大约可装汽油多少千克?
2、一根钢管外直径4分米,内直径3分米,长5分米。已知这种钢管每立方分米钢重7.8千克,这根钢管重多少千克?
3、一个圆锥形大豆堆,它的底面周长是6.28米,高是0.6米。假如每立方米大豆重580千克,这堆大豆约重多少千克?
4、有一个内直径为8百米的圆柱形钢杯,内深度为15厘米的水,这些水恰好占这只杯子容量的60%。再放入多少立方厘米的水才能将这只杯子装满?
提示:先求还要装水的高度,再用杯子底面积乘以高度就可求出再放入的水的体积。
四、深化练习
1、把一个底面积直径10厘米的圆柱体侧面绽开,得到一个正方形,这个圆柱的高是多少厘米?
2、一个圆柱体的底面面周长是31.4厘米,高30厘米,它的体积是一个圆锥体积的3倍。已知圆锥的高是6厘米,圆锥底面积是多少平方厘米?
提示:要求圆锥的底面积需要知道圆锥的什么条件?圆锥的体积有及谁有关系?要先求圆锥的什么?
3、把一个高8分米的圆柱体割拼成一个及圆柱体等底等高的近似长方体以后,外表积增加了24平方分米,原来圆柱体的体积是多少?
提示:圆柱体割拼成近似的长方体后外表积增加的是两个同样大小的长方形,这个长方体的长相当于圆柱的高,宽相当于圆柱底面半径,可求出底面积,最终求出体积。
4、一个圆锥的底面积是一个圆柱底面积的2/3,圆锥的高是圆柱的3倍,圆柱的体积是圆锥的(
)。
提示:用假设法解答:假设圆柱体的底面积看作“1”,那么圆锥底面积就是“2/3”,把圆柱高看作单位“1”,那么高就是“3”,然后根据体积公式列式计算:(1×1)÷(1/3×2/3×3)=1.5。
五、课内外作业第三单元比例
一、教学内容:
本单元教材内容有比例的意义和根本性质,正、反比例的概念,比例尺的意义和性质,按比例安排的根底上进展教学的。
比例的意义和性质是为学习正、反比例作准备的。这些学问在今后学习是要常常用到。它是本单元的根底学问,教材通过例子引入比例的意义,再引出比便的根本性质,接着讲应用比例的性质解比例。最终教材再进展比例尺的教学,沟通了比例和比例尺的联络。
比例尺是比的概念的实际,是用化简比的方法求出比例尺的。教材还介绍了线段比例尺,把丝段比例尺及前面讲的比例尺联络起来,使学生加深比照例尺的理解。
本单元第2小节教学正、反比例的意义。新教材是把正比例的意义和反比例的意义编在一起同时进展教学,加强了正比例和反比例意义的比照,使学生更简洁区分、比照、推断。避开发生混淆。由于正、反比例的意义是解答正比例和反比例应用题的根据,而正、反比例的意义比拟抽象,学生难于理解,因此,这局部内容既是本单元教学重点,出是难点。
二、教学重难点、关健:
1.重点:比例的意义和根本性质,正比例、反比例的意义。
2.难点:正、反比例的意义的理解和推断。
3.关键:通过已学过的常见的数量关系,结合实际进展教学。三、教学目的:
1.使学生理解比例的意义和根本性质,会解比例。
2.使学生理解正、反比例的意义,可以正确推断成正、反比例的量,会用比例学问解答比拟简洁的应用题。
3.使学生可以应用比例的学问,求出平面图的比例尺以及根据比例尺求图上间隔或实际间隔。
4.通过比例的教学,使学生进一步受到辩证唯物主义观点的启蒙教化。第1课时:比例的意义和根本性质教学内容:比例的意义、根本性质,比例各局部名称,组比例。
教学目的:1.使学生理解比例的意义,相识比例各局部的名称。
2.能运用比例的意义推断两个比能否组成比例,并会组比例。理解并驾驭比例的根本性质。教学重点:比例的意义和根本性质。
教学难点:理解比例的根本性质。
教学过程:
一、复习
1、提问:什么是比?
2、求下面各比的比值,哪些比的比值相等?
12:16
1/4:1/3
4.5:2.7
10:6
二、新授
提示课题:这节课我们在过去学过比的学问的根底上,学一个的学问:比例的意义和根本性质。
1、比例的意义
出示例1:一辆汽车第一次2小时行驶80千米,第二次5小时行驶200千米。列表如下:
时间(时)25
路程(千米)80200
从上不中可以看到,这辆汽车:
第一次所行台的路程和时间的比是____;
第二次所行驶的路程和时间的比是____;
这两个比的比值各是多少?它们有什么关系?
(1)根据学生答复,师板书结果后,师指出:这两个比的比值都是40,所以这两个比是相等的,可以用等号将两个比连起来写成下面的等式。
板书:80:2=200:5
或
80/2=200/5
师:这样的式子,我们给它一个名字叫做比例。
(2)口答
A、把复习第2题中两个比值相等的比用等号连起来。
B、用等号连接起来的式子叫做什么?
C、根据刚刚的答复,你能说出什么叫比例吗?
(3)小结。
A、表示两个比相等的式子叫做比例,两个比的比值相等也就是这两个比相等。
B、要推断两个比能否组成比例,可以看这两个比的比值是否相等。比值相等的两个比可以组成比例,比值不相等的两个比就不能组成比例。
(4)练习,课本第10页做一做。
2、比例的根本性质。
(1)比例各局部的名称。
引导学生视察黑板上的例题:80:2=200:5
并自学课本
提问:什么叫做比例的项?什么叫前项?什么叫后项?什么叫内项?什么叫外项?这四项分别在等号的什么位置?
(2)说出下面各比例的外项和内项?
6:10=9:15
8:3=3.2:1.2
1/3:1/6=16:8
(3)计算:上面比例中的外项积及内项积。
(4)引导学生视察每个比例中的计算结果,发觉这两个乘积有怎样的关系?
师:想一想,假如把比例写成分数形式,等号两端的分子分母穿插相乘的积有什么关系?
(5)你能得出什么结论?
板书性质
三、稳固练习
1、完成第2页的“做一做”。
2、完成第3页的“做一做”第1题,
四、总结
1、比例的意义和根本性质是什么?
2、怎样推断两个比能否组成比例?
五、作业第2课时:解比例
教学内容:解比例
教学目的:使学生进一步驾驭比例的根本性质,学会应用比例的根本性质解比例。
教学重点:正确地解比例。
教学难点:解比例的一般步骤。教学过程:
一、复习
1、什么叫比例?什么叫做比例的根本性质?
2、下面哪一组中的两个比可以组成比例?用比例的根本性质检验。
18:20和7.2:8
100:0.2和10:0.002
1/3:1/4和1/6:1/8
二、新授
1、解比例。
在一个比例中,共有四项,假如已知其中的任何三项就可以就出这个比例中的另外一个未知项,只要根据比例的根本性质来求。
出示例2:3:8=15:X
学生尝试练习,请一名学生板演。
3X=8×15
X=40
你是怎样做的?理由是什么?
出求例3:9/X=4.5/0.8
提示学生分数形式的比哪两个是内项?哪两个是外项?
学生尝试练习,做完后,请一名学生说说是怎样做的?为什么?会检验吗?请你将例2例3检验。
提问:你是怎样进展检验的?
2、小结:解比例可以分几步?A、先写出外项积等于内项积的等式,B、根据以前学过的因数及积的关系求未知项,第三步不要遗忘检验。
三、稳固练习
第3课时:成正比例的量
教学内容:正比例的意义。
教学目的:使学生理解正比例的意义,会正确推断成正比例的量,培育学生的推断实力。
教学重点:正比例的意义。
教学难点:正比例的推断。教学过程:
一、复习
根据下面各题,先口答列式及得数,后说数量关系式。
1、一列火车2小时行驶250千米,平均每小时行驶多少千米?
2、一种布,买3米共要27元,平均每米布多少元?
3、某印刷厂5天消费2.5万本练习册,平均每天消费多少万本练习册?
师据学生答复板书如下:
路程/时间=速度
总价/数量=单价
工作总量/工作时间=工作效率
二、引新
我们已经学过一些常见的数量关系,如上面这些速度、时间和路程的关系,单价、数量和总价的关系,工作效率、工作时间和工作总量的关系等。如今我们进一步来讨论这些数量关系中的一些特征。如速度肯定,路程和时间有什么关系?或者时间肯定,路程和速度之间有什么关系?这节课我们先来学习这方面的学问。“正比例的意义”。(板书)
三、新授
1、教学例1。一列火车行驶的时间和所行的路程如下表。
时间(时)12345678……
路程(千米)90180270360450540630720……
(1)引导学生视察上表内数据。
(2)边视察边思索下面问题:
(1)表中有哪几种量?这两促量有没有关系?
(2)这两种量是怎样设化的?(路程是随着时间的改变页改变。时间扩大,路程也随着扩大;时间缩小,路程也随着缩小。)
(3)引导学生分析这两种相关联的量的改变有什么规律?
(1)从表内找出几组相对应的两个数,求出比值,再比拟比值的大小。指名口答,师板书:
90/1=90
360/4=90
540/6=90
………
(2)从下面的比式中,你能不能找出改变规律?这个90事实上就是这列火车的什么?(速度)
(3)师:它们之间的关系可以用式子表示
路程/时间=速度(肯定)
(4)小结。
时间和路程是两种相关联的量,路程随着时间的改变而改变。时间扩大,路程随着扩大;时间缩小,路程也随着缩小。它们扩大、缩小的规律是:路程和时间的比的比值总是肯定的。
2、教学例2
(1)出示例2,在布店的柜台上,有像下面一张写着某种花布的米数和总价的表。
数量(米)
1234567…
总价(元)8.216.424.632.841.049.257.4…
(2)引导学生视察上表内的数据。
(3)答复下面风个问题:
表中有哪两种量?这两种量有关系吗?为什么?
这两种量是怎样改变的?
它们的改变有什么规律?
相对应的总价和米数的比各是多少?比值是多少?比拟这些比值的大小,相等吗?这个比值事实上就是花布的什么?
(4)小结。
花布的米和总价也是两种相关联的量,总价是随着米数的改变而改变的。米数扩大,总价也随着扩大;米数缩小,总价随着缩小。它们扩大,缩小的规律是:总价和米数的比的比值是肯定的。
3、概括正比例的意义及关系式。
(1)比拟上面的例1和例2,它们有什么共同点?
(2)推断成正比例量的方法:是什么?
(3)师:例1中路随着时间的改变而改变,它们的比的比值,也就是速度保持肯定。年以,路程和时间是成正比例的量。大家想一想:在例2中,有哪两种相关联的量?它们是不是成正比例的量?为什么?
(4)概括关系式:
Y/X=K(肯定)
4、教学例3。
出示例3
师:大家能不能根据上面的推断成正比例量的方法说说?指名口述、师扶植订正。关系式是:总重量/袋数=每袋面粉重量(肯定)
5、小结。
推断两种相关联的量是否成正比例,关键是看这两种相关联的量中相对应的两个数的比值是否肯定,假如比值肯定,那么这两种量就是成正比例的量。
四、稳固练习五、总结。
1、什么叫成正比例的量?
2、怎样推断两种量是成正比例的量?
六、作业:第4课时
反比例的意义
教学内容:成反比例的量。
教学目的:使学生理解反比例的意义,会正确推断两种相关联的量是否成反比
例,培育学生推断实力。
教学重点、难点:反比
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- HY/T 0415-2024海底底质资料整编技术规范
- 宜宾学院《数据库理论与实践》2021-2022学年第一学期期末试卷
- 许昌学院《发展心理学》2021-2022学年第一学期期末试卷
- 徐州工程学院《面向对象分析与设计》2022-2023学年第一学期期末试卷
- 运动与健康促进工作计划
- 社区特殊人群关怀的个人项目计划
- 信阳师范大学《幼儿舞蹈创编》2022-2023学年第一学期期末试卷
- 绿色发展的品牌创新探索计划
- 公关活动策划计划
- 信阳师范大学《计算机网络原理》2022-2023学年第一学期期末试卷
- 2023-2024学年辽宁省沈阳市铁西区牛津上海版(三起)四年级上册期末学业水平测试英语试卷
- 浅谈心理健康与职业生涯
- 脐肠瘘查房课件
- 湖南省株洲市2023届高三教学质量统一检测(一)物理答案
- 粤教版科学三年级上册全册试卷(含答案)
- 300t汽车吊起重性能表
- 大班数学活动《认位置》课件
- 2023年全国统一高考英语试卷(全国甲卷)(含答案与解析)
- 全国优质课一等奖部编版小学四年级下册道德与法治《合理消费》公开课课件(内嵌视频)
- 蔚来用户运营分析报告-2023-11-数字化
- Water-Pollution水污染英文课件
评论
0/150
提交评论