




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共12小题,共60分)1.下列结论正确的是()A.若,则 B.若,则C.若,则 D.若,则2.“”是“且”的()A.必要而不充分条件 B.充分而不必要条件C.充要条件 D.既不充分也不必要条件3.已知函数,则的图像大致是()A. B.C. D.4.已知定义在R上的奇函数满足:当时,.则()A.2 B.1C.-1 D.-25.某几何体的三视图如图所示,则它的体积是A.B.C.D.6.过点,直线的斜率等于1,则m的值为()A.1 B.4C.1或3 D.1或47.已知集合,下列结论成立是()A. B.C. D.8.函数y=ax﹣2+1(a>0且a≠1)的图象必经过点A.(0,1) B.(1,1)C.(2,0) D.(2,2)9.直线和直线的距离是A. B.C. D.10.设定义在上的函数满足:当时,总有,且,则不等式的解集为()A. B.C. D.11.设,则的大小关系为()A. B.C. D.12.已知,则()A. B.C. D.二、填空题(本大题共4小题,共20分)13.已知为角终边上一点,且,则______14.是第___________象限角.15.已知函数,则_________16.命题“,”的否定是_________.三、解答题(本大题共6小题,共70分)17.已知集合,.(1)若,求;(2)在①,②,③,这三个条件中任选一个作为条件,求实数的取值范围.(注意:如果选择多个条件分别解答,则按第一个解答计分)18.设函数,其中.(1)求函数的值域;(2)若,讨论在区间上的单调性;(3)若在区间上为增函数,求的最大值.19.已知,.(1)求;(2)若角的终边上有一点,求.20.集合A={x|},B={x|};(1)用区间表示集合A;(2)若a>0,b为(t>2)的最小值,求集合B;(3)若b<0,A∩B=A,求a、b的取值范围.21.已知幂函数的图象关于轴对称,集合.(1)求的值;(2)当时,的值域为集合,若是成立的充分不必要条件,求实数的取值范围.22.水车在古代是进行灌溉引水的工具,是人类的一项古老的发明,也是人类利用自然和改造自然的象征.如图是一个半径为的水车,当水车上水斗A从水中浮现时开始计算时间,点A沿圆周按逆时针方向匀速旋转,且旋转一周用时60秒,经过秒后,水斗旋转到点,已知,设点的坐标为,其纵坐标满足(1)求函数的解析式;(2)当水车转动一圈时,求点到水面的距离不低于的持续时间
参考答案一、选择题(本大题共12小题,共60分)1、A【解析】AD选项,可以用不等式基本性质进行证明;BC选项,可以用举出反例.【详解】,显然均大于等于0,两边平方得:,A正确;当时,满足,但,B错误;若,当时,则,C错误;若,,则,D错误.故选:A2、A【解析】根据充分条件和必要条件的定义结合不等式的性质分析判断【详解】当时,满足,而不成立,当且时,,所以,所以“”是“且”的必要而不充分条件,故选:A3、C【解析】判断函数的奇偶性,再利用时,函数值的符号即可求解.【详解】由,则,所以函数为奇函数,排除B、D.当,则,所以,,所以,排除A.故选:C4、D【解析】由奇函数定义得,从而求得,然后由计算【详解】由于函数是定义在R上的奇函数,所以,而当时,,所以,所以当时,,故.由于为奇函数,故.故选:D.【点睛】本题考查奇函数的定义,掌握奇函数的概念是解题关键.5、A【解析】根据已知的三视图想象出空间几何体,然后由几何体的组成和有关几何体体积公式进行计算由几何体的三视图可知几何体为一个组合体,即一个正方体中间去掉一个圆锥体,所以它的体积是.6、A【解析】解方程即得解.【详解】由题得.故选:A【点睛】本题主要考查斜率的计算,意在考查学生对该知识的理解掌握水平.7、C【解析】利用集合的交、并、补运算进行判断.【详解】因为,所以,故A错;,故B错;,故D错.故选:C8、D【解析】根据a0=1(a≠0)时恒成立,我们令函数y=ax﹣2+1解析式中的指数部分为0,即可得到函数y=ax﹣2+1(a>0且a≠1)的图象恒过点的坐标解:∵当X=2时y=ax﹣2+1=2恒成立故函数y=ax﹣2+1(a>0且a≠1)的图象必经过点(2,2)故选D考点:指数函数的单调性与特殊点9、A【解析】因为直线即,故两条平行直线和的距离故选A10、A【解析】将不等式变形后再构造函数,然后利用单调性解不等式即可.【详解】由,令,可知当时,,所以在定义域上单调递减,又,即,所以由单调性解得.故选:A11、D【解析】利用指数函数与对数函数的性质,即可得出的大小关系.【详解】因为,,,所以.故选:D.【点睛】本题考查的是有关指数幂和对数值的比较大小问题,在解题的过程中,注意应用指数函数和对数函数的单调性,确定其对应值的范围.比较指对幂形式的数的大小关系,常用方法:(1)利用指数函数的单调性:,当时,函数递增;当时,函数递减;(2)利用对数函数的单调性:,当时,函数递增;当时,函数递减;(3)借助于中间值,例如:0或1等.12、C【解析】先对两边平方,构造齐次式进而求出或,再用正切的二倍角公式即可求解.【详解】解:对两边平方得,进一步整理可得,解得或,于是故选:C【点睛】本题考查同角三角函数关系和正切的二倍角公式,考查运算能力,是中档题.二、填空题(本大题共4小题,共20分)13、##【解析】利用三角函数定义可得:,即可求得:,再利用角的正弦、余弦定义计算得解【详解】由三角函数定义可得:,解得:,则,所以,,.故答案为:.14、三【解析】根据给定的范围确定其象限即可.【详解】由,故在第三象限.故答案为:三.15、【解析】运用代入法进行求解即可.【详解】,故答案为:16、,##【解析】根据全称量词命题的否定即可得出结果.【详解】由题意知,命题“”的否定为:.故答案为:.三、解答题(本大题共6小题,共70分)17、(1);(2).【解析】(1)根据并集的概念和运算,求得.(2)三个条件都是表示,由此列不等式组,解不等式组求得的取值范围.【详解】(1)当时,,所以.(2)三个条件、、都表示,所以,解得,所以实数的取值范围为【点睛】本小题主要考查集合并集的概念和运算,考查根据集合的包含关系求参数的取值范围,属于基础题.18、(1)(2)在区间上单调递增,在上单调递减(3)【解析】(1)首先化简函数,再求函数的值域;(2)利用代入法,求的范围,再结合函数的性质,即可求解函数的单调性;(3)由(1)可知,,首先求的范围,再根据函数的单调区间,求的最大值.【小问1详解】,所以函数的值域是;【小问2详解】时,,当,,当,即时,函数单调递增,当,即时,函数单调递减,所以函数的单调递增区间是,函数的单调递减区间是;【小问3详解】若,则,若函数在区间上为增函数,则,解得:,所以的最大值是.19、(1)(2)【解析】(1)由条件求得,将所求式展开计算(2)由条件求得与,再由二倍角与两角和的正切公式计算小问1详解】,,则故【小问2详解】角终边上一点,则由(1)可得,20、(1);(2);(3),.【解析】(1)解分式不等式即可得集合A;(2)利用基本不等式求得b的最小值,将b代入并因式分解,即可得解;(3)由题意知A⊆B,对a分类讨论即求得范围【详解】解:(1)由,有,解得x≤﹣2或x>3∴A=(-∞,-2]∪(3,+∞)(2)t>2,当且仅当t=5时取等号,故即为:且a>0∴,解得故B={x|}(3)b<0,A∩B=A,有A⊆B,而可得:a=0时,化为:2x﹣b<0,解得但不满足A⊆B,舍去a>0时,解得:或但不满足A⊆B,舍去a<0时,解得或∵A⊆B∴,解得∴a、b的取值范围是a∈,b∈(-4,0).【点评】本题考查了集合运算性质、不等式的解法、分类讨论方法,考查了推理能力与计算能力,属于中档题.21、(1)(2)【解析】(1)根据幂函数的定义可得,求出的值,再检验即可得出答案.(2)先求出函数的值域,即得出集合,然后由题意知,根据集合的包含关系得到不等式组,从而求出答案.【小问1详解】由幂函数定义,知,解得或,当时,的图象不关于轴对称,舍去,当时,的图象关于轴对称,因此.【小问2详解】
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024九年级英语下册 Unit 10 Get Ready for the FutureLesson 59 Keep Your Choices Open教学设计(新版)冀教版
- 人美版七年级下册美术第三课《同类色与邻近色》教学设计
- 关于成立超高性能计算资源中心公司可行性研究报告
- 大宗固废综合利用项目可行性研究报告
- 城镇排水管网规划项目可行性研究报告
- 公司债券担保合同书二零二五年
- 工装纯设计合同书范例
- 宅基地土地转让的合同书范例
- 二零二五版范文公司员工干股合作协议书
- 二零二五版托管班老师聘用合同书
- 工厂自动化规划报告
- 《分布式生活垃圾中转站臭气处理技术规程》
- 一般企业财务报表附注(模板)
- 波斯帝国课件
- ICD-10和ICD-9-CM-3编码质控解析-循环系统
- 河南省劳动关系协调员职业技能大赛技术工作文件
- 艺术涂料施工协议
- 废铁拆除安全合同范例
- 2024年大学试题(宗教学)-宗教学综合练习考试近5年真题集锦(频考类试题)带答案
- 办会流程及注意事项
- 婴幼儿家园共育 课程标准
评论
0/150
提交评论