清华大学课程《计量经济学》配套习题和答案_第1页
清华大学课程《计量经济学》配套习题和答案_第2页
清华大学课程《计量经济学》配套习题和答案_第3页
清华大学课程《计量经济学》配套习题和答案_第4页
清华大学课程《计量经济学》配套习题和答案_第5页
已阅读5页,还剩138页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

-需求”模型中,的条件可以满足。例如,如果第一个方程是供给方程,而第二个方程是需求方程,则这里的就代表供给量或需求量,而就代表这市场价格。于是,应有,。2.一个由两个方程组成的联立模型的结构形式如下(省略t-下标)(1)指出该联立模型中的内生变量与外生变量。(2)分析每一个方程是否为不可识别的,过度识别的或恰好识别的?(3)有与μ相关的解释变量吗?有与υ相关的解释变量吗?(4)如果使用OLS方法估计α,β会发生什么情况?(5)可以使用ILS方法估计α吗?如果可以,推导出估计值。对β回答同样的问题。(6)逐步解释如何在第2个方程中使用2SLS方法。解答:(1)内生变量:P、N;外生变量:A、S、M(2)容易写出联立模型的结构参数矩阵PN常量SAM对第1个方程,,因此,,即等于内生变量个数减1,模型可以识别。进一步,联立模型的外生变量个数减去该方程外生变量的个数,恰等于该方程内生变量个数减1,即4-3=1=2-1,因此第一个方程恰好识别。对第二个方程,,因此,,即等于内生变量个数减1,模型可以识别。进一步,联立模型的外生变量个数减去该方程外生变量的个数,大于该方程内生变量个数减1,即4-2=2>=2-1,因此第二个方程是过渡识别的。该模型对应于13.3届中的模型4。我们注意到该模型为过渡识别的。综合两个方程的识别状况,该联立模型是过渡识别的。(3)S,A,M为外生变量,所以他们与μ,υ都不相关。而P,N为内生的,所以他们与μ,υ都相关。具体说来,N与P同期相关,而P与μ同期相关,所以N与μ同期相关。另一方面,N与v同期相关,所以P与v同期相关。(4)由(3)知,由于随机解释变量的存在,α与β的OLS估计量有偏且是不一致的。(5)对第一个方程,由于是恰也识别的,所以间可用接最小二乘法(ILS)进行估计。对第二个方程,由于是过渡识别的,因此ILS法在这里并不适用。(6)对第二个方程可采用二阶段最小二乘法进行估计,具体步骤如下:第1阶段,让P对常量,S,M,A回归并保存预测值;同理,让N对常量,S,A,M回归并保存预测值。第2阶段,让对常量、、作回归求第2个方程的2SLS估计值。三、习题6-1.解释下列概念:联立问题行为方程间接最小二乘法识别问题二阶段最小二乘法三阶段最小二乘法简化式模型不可识别恰度识别过度识别结构式模型递归系统模型先决变量参数关系体系6-2.为什么要建立联立方程模型,联立方程模型适用于什么样的经济现象?6-3.联立方程模型中的变量可以分为几类?其含义各是什么?6-4.联立方程模型中的方程可以分为几类?其含义各是什么?6-5.联立方程模型可以分为几类?其含义各是什么?6-6.联立方程模型的识别状况可以分为几类?其含义各是什么?6-7.结构方程可识别和不可识别的等价定义是什么?6-8.简述结构方程识别的阶条件和秩条件的步骤。6-9.联立方程模型的估计有哪些方法?其适用条件、统计性质各是什么?6-10.联立方程计量经济模型中结构方程的结构参数为什么不能直接应用OLS估计?6-11.已知一个联立方程计量经济学模型的完备的结构式模型,如何确定其中的内生变量、先决变量、外生变量?6-12.如何对不可识别的方程进行简单的修改使之可以识别?6-13.为什么说ILS、IV、2SLS方法都可以认为是工具变量方法?它们在工具变量的选取上有什么区别?6-14.证明对于恰好识别的结构方程ILS、IV、2SLS的参数估计量是等价的。6-15.3SLS的方法步骤是什么?为什么3SLS的参数估计量比2SLS的参数估计量更有效?6-16.理解联立方程计量经济学模型单方程估计方法与系统估计方法的概念。6-17.写出结构模型的一般形式和结构参数矩阵。6-18.写出简化模型的一般形式和参数关系式的表达式。6-19.已知简单的Keynesian收入决定模型如下:(消费方程)(投资方程)(定义方程)要求:(1)导出简化型方程;(2)试证明:简化型参数是用来测定外生变量变化对内生变量所起的直接与间接的总影响(以投资方程的简化型为例来加以说明)。(3)试用阶条件与秩条件确定每个结构方程的识别状态;整个模型的识别状态如何?6-20.为什么间接最小二乘法(ILS)只适用于恰好识别的结构模型?6-21.简述二阶段最小二乘法(2SLS)的两个阶段6-22.在联立方程计量经济学模型YΒ+XΓ=U中,每个结构方程的随机误差项具有0均值、同方差且存在一阶序列相关,每个结构方程的随机误差项之间具有同期相关。要求:写出该联立方程计量经济学模型随机误差项的方差—协方差矩阵。6-23.某联立方程计量经济学模型有3个方程、3个内生变量(,,)、3个外生变量(,,)和样本观测值始终为1的虚变量C,样本容量为n。其中第2个方程:为恰好识别的结构方程。要求:(1)写出用IV法估计该方程参数的正规方程组;(2)用ILS方法估计该方程参数,也可以看成一种工具变量方法,指出工具变量是如何选取的,并写出参数估计量的矩阵表达式;(3)用2SLS方法估计该方程参数,也也可以看成一种工具变量方法,指出的工具变量是什么,并写出参数估计量的矩阵表达式;6-24.下列为一完备的联立方程计量经济学模型:其中:M为货币供给量,Y为国内生产总值,P为价格总指数。要求:(1)指出模型的内生变量、外生变量、先决变量;(2)写出简化式模型,并导出结构式参数与简化式参数之间的关系;(3)用结构式条件确定模型的识别状态;(4)从方程之间的关系出发确定模型的识别状态;(5)如果模型不可识别,试作简单的修改使之可以识别;(6)指出ILS、IV、2SLS中哪些可用于原模型第1、2个方程的参数估计。6-25.独立建立一个包含3~4个方程的中国宏观经济模型,并完成模型的识别和估计(可以采取本章中第五节的例子,将样本观测值扩大到2000年之后,自己独立完成)。四、习题解答6-1联立问题:经济现象是极为复杂的,其中诸因素之间的关系,在很多情况下,不是单一方程所能描述的那种简单的单向因果关系,而是相互依存,互为因果的,这时,就必须用联立的计量经济学方程才能描述清楚。联立方程计量经济学模型以经济系统为研究对象,揭示经济系统中各部分、各因素之间的数量关系和系统的数量特征。行为方程:行为方程描述经济系统中变量之间的行为关系,主要是因果关系,例如用收入作为消费的解释变量建立的方程。间接最小二乘法:先对关于内生解释变量的简化式方程采用普通最小二乘法估计简化式参数,得到简化式参数估计量,然后通过参数关系体系,计算得到结构式参数的估计量。识别问题:联立方程计量经济学模型是由多个方程组成,对方程之间的关系有严格的要求,否则模型就可能无法估计。所以在进行模型估计之前首先要判断它是否可以估计,这就是模型的识别。如果联立方程模型中某个结构方程不具有确定的统计形式,则称该方程为不可识别。如果一个模型中的所有随机方程都是可以识别的,则认为该联立方程模型系统是可以识别的。反过来,如果一个模型系统中存在一个不可识别的随机方程,则认为该联立方程模型系统是不可以识别的。二阶段最小二乘法:估计联立方程模型中的某个结构式方程时,先用普通最小二乘法对其中内生解释变量的简化式进行估计,得到内生解释变量的估计值,用此估计值代替原结构式方程中的内生解释变量,再对变换了的结构式方程用普通最小二乘法进行估计。三阶段最小二乘法:三阶段最小二乘法是估计联立方程模型全部结构方程的系统估计方法,基本思路是3SLS=2SLS+GLS,即首先用两阶段最小二乘法估计模型系统中的每一个结构方程,然后再用广义最小二乘法估计模型系统。简化式模型:将联立方程模型的每个内生变量表示成所有先决变量和随机误差项的函数,即用所有先决变量作为每个内生变量的解释变量,所形成的模型称为简化式模型。不可识别:如果联立方程模型中某个结构方程不具有确定的统计形式,则称该方程为不可识别。如果一个模型系统中存在一个不可识别的随机方程,则认为该联立方程系统是不可识别的。恰度识别:如果某一个随机方程具有一组参数估计量,称其为恰度识别。过度识别:如果某一个随机方程具有多组参数估计量,称其为过度识别。结构式模型:根据经济理论和行为规律建立的描述经济变量之间直接关系结构的计量经济学方程系统称为结构式模型。结构式模型中的每一个方程都是结构方程,将一个内生变量表示为其它内生变量、先决变量和随机误差项的函数形式,被称为结构方程的正规形式。12)递归系统模型:联立方程模型,如果即在第1个方程中被解释变量为,解释变量全部为先决变量;在第2个方程中被解释变量为,解释变量中除了作为第1个方程被解释变量的内生变量外,全部为先决变量;第3个方程…,依次类推。这类模型称为递归系统模型。13)先决变量:外生变量与滞后内生变量统称为先决变量。14)参数关系体系:简化式参数与结构式参数之间的关系,称为参数关系体系。6-2.经济现象是极为复杂的,其中诸因素之间的关系,在很多情况下,不是单一方程所能描述的那种简单的单向因果关系,而是相互依存,互为因果的,这时,就必须用联立的计量经济学方程才能描述清楚。所以与单方程适用于单一经济现象的研究相比,联立方程模型适用于描述复杂的经济现象,即经济系统。6-3.对于联立方程模型系统而言,将变量分为内生变量和外生变量两大类,外生变量与滞后内生变量又被统称为先决变量。内生变量是具有某种概率分布的随机变量,它是由模型系统决定的,同时也对模型系统产生影响,内生变量一般都是经济变量。外生变量一般是确定性变量,或者是具有临界概率分布的随机变量。外生变量影响系统,但本身不受系统的影响。外生变量一般是经济变量、条件变量、政策变量、虚变量。6-4.联立方程模型中,结构式模型中的每一个方程都是结构方程,简化式模型中每个方程称为简化式方程,结构方程的方程类型如下:其中,行为方程描述经济系统中变量之间的行为关系,主要是因果关系,例如用收入作为消费的解释变量建立的方程;技术方程描述由技术决定的变量之间的关系,例如用总产值作为净产值的解释变量建立的方程;制度方程描述由制度决定的变量之间的关系,例如用进口总额作为关税收入的解释变量建立的方程;统计方程描述由数据之间的相关性决定的变量之间的关系,例如描述城镇居民收入与农村居民收入之间关系的方程。定义方程是由经济学或经济统计学的定义决定的,例如国内生产总值等于第一、二、三产业增加值之和;平衡方程是由变量所代表的指标之间的平衡关系决定的,例如政府消费等于消费总额减去居民消费。经验方程仅描述由经验得到的数据之间的确定性关系,没有什么实质性意义。6-5.联立方程模型可以分为结构式模型和简化式模型。根据经济理论和行为规律建立的描述经济变量之间直接关系结构的计量经济学方程系统称为结构式模型。结构式模型中的每一个方程都是结构方程,将一个内生变量表示为其它内生变量、先决变量和随机误差项的函数形式,被称为结构方程的正规形式。将联立方程模型的每个内生变量表示成所有先决变量和随机误差项的函数,即用所有先决变量作为每个内生变量的解释变量,所形成的模型称为简化式模型。6-6.联立方程模型的识别状况可以分为可识别和不可识别,可识别又分为恰好识别和过度识别。如果联立方程模型中某个结构方程不具有确定的统计形式,则称该方程为不可识别,或者根据参数关系体系,在已知简化式参数估计值时,如果不能得到联立方程模型中某个结构方程的确定的结构参数估计值,称该方程为不可识别。如果一个模型中的所有随机方程都是可以识别的,则认为该联立方程模型系统是可以识别的。反过来,如果一个模型系统中存在一个不可识别的随机方程,则认为该联立方程模型系统是不可以识别的。如果某一个随机方程具有一组参数估计量,称其为恰好识别;如果某一个随机方程具有多组参数估计量,称其为过度识别。6-7.定义一:如果联立方程模型中某个结构方程不具有确定的统计形式,则称该方程为不可识别。定义二:如果联立方程模型中某些方程的线性组合可以构成与某一个方程相同的统计形式,则称该方程为不可识别。定义三:根据参数关系体系,在已知简化式参数估计值时,如果不能得到联立方程模型中某个结构方程的确定的结构参数估计值,则称该方程为不可识别。6-8.联立方程计量经济学模型的结构式中的第i个方程中包含个内生变量(含被解释变量)和个先决变量(含常数项),模型系统中内生变量和先决变量的数目用和表示,矩阵表示第i个方程中未包含的变量(包括内生变量和先决变量)在其它个方程中对应系数所组成的矩阵。于是,判断第i个结构方程识别状态的结构式条件为:如果,则第i个结构方程不可识别;如果,则第i个结构方程可以识别,并且如果,则第i个结构方程恰好识别,如果,则第i个结构方程过度识别。其中符号R表示矩阵的秩。一般将该条件的前一部分称为秩条件,用以判断结构方程是否识别;后一部分称为阶条件,用以判断结构方程恰好识别或者过度识别。6-9.单方程估计方法有:狭义的工具变量法(IV),间接最小二乘法(ILS),两阶段最小二乘法(2SLS);系统估计方法有:三阶段最小二乘法(3SLS),完全信息最大或然法(FIML)。狭义的工具变量法(IV)和间接最小二乘法(ILS)只适用于恰好识别的结构方程的估计。两阶段最小二乘法(2SLS)、三阶段最小二乘法(3SLS)、完全信息最大或然法(FIML)既适用于恰好识别的结构方程,又适用于过度识别的结构方程。工具变量法参数估计量,一般情况下,在小样本下是有偏的,但在大样本下是渐近无偏的。如果选取的工具变量与方程随机误差项完全不相关,那么其参数估计量是无偏性估计量。对于间接最小二乘法,对简化式模型应用普通最小二乘法得到的参数估计量具有线性、无偏性、有效性。通过参数关系体系计算得到结构方程的结构参数估计量在小样本下是有偏的,在大样本下是渐近无偏的。采用二阶段最小二乘法得到结构方程的结构参数估计量在小样本下是有偏的,在大样本下是渐近无偏的。3SLS估计量的统计性质主要有:⑴如果联立方程模型系统中所有结构方程都是可以识别的,并且非奇异,则3SLS估计量是一致性估计量。为了保证非奇异,必须将模型系统中的恒等式排除在外,不参加估计过程。因为恒等式的随机误差项为0,将使矩阵中出现0行和0列,使之成为奇异矩阵。⑵3SLS估计量比2SLS估计量更有效,但是这是对大样本而言。对于有限样本情况下3SLS估计量和2SLS估计量的有效性比较,无法从数学上加以证明,可以通过MonteCarlo试验进行统计上的说明。⑶如果是对角矩阵,即模型系统中不同结构方程的随机误差项之间无相关性,那么可以证明3SLS估计量与2SLS估计量是等价的。在大样本时,一般情况下,3SLS与FIML具有相同的渐近有效性。但是,在特殊情况下,例如,如果在开始估计之前已经知道方程系统随机误差项的方差、协方差信息,FIML就可以充分利用这些信息,因而比3SLS更有效。6-10.第一,结构方程解释变量中的内生解释变量是随机解释变量,不能直接用OLS来估计;第二,损失变量信息问题:在估计联立方程系统中某一个随机方程参数时,必须考虑没有包含在该方程中的变量的数据信息;第三,联立方程模型系统中每个随机方程之间往往存在某种相关性,表现于不同方程随机误差项之间,如果采用单方程模型方法估计某一个方程,是不可能考虑这种相关性的,造成信息的损失。6-11.内生变量:内生变量是具有某种概率分布的随机变量,它的参数是联立方程系统估计的元素,内生变量是由模型系统决定的,同时也对模型系统产生影响。内生变量一般都是经济变量。一般情况下,内生变量满足:即因为外生变量:外生变量一般是确定性变量,或者是具有临界概率分布的随机变量,其参数不是模型系统研究的元素。外生变量影响系统,但本身不受系统的影响。外生变量一般是经济变量、条件变量、政策变量、虚变量。外生变量一般满足:外生变量与滞后内生变量统称为先决变量。6-12.修改方程使得其余每一个方程中都包含至少1个该方程所未包含的变量,并且互不相同,那么所有方程的任意线性组合都不能构成与该方程相同的统计形式,则该方程变为可以识别的方程。6-13.狭义工具变量法用结构方程中未包含的先决变量作为的工具变量,用结构方程中包含的先决变量作为自己的工具变量;而间接最小二乘法则将先决变量按自己的顺序作为的工具变量;二阶段最小二乘法选取的线性组合作为结构方程中内生解释变量的工具变量,选取作为自己的工具变量。6-14.分别采用三种单方程估计方法得到的参数估计量如下:(1)(2)(3)可以看到,三种结果是用不同的工具变量方法估计得到的,区别仅在于工具变量选取不同。比较狭义工具变量法和间接最小二乘法的参数估计量(1)与(2),它们选取了同样一组变量作为结构方程中解释变量的工具变量,只是次序不同。狭义工具变量法用结构方程中未包含的先决变量作为的工具变量,用结构方程中包含的先决变量作为自己的工具变量;而间接最小二乘法则将先决变量按自己的顺序作为的工具变量,这就使得结构方程中包含的先决变量也选择了其它先决变量作为工具变量,而不是自身,这两种不同的选取只影响正规方程组中方程的次序,并不影响方程组的解。所以狭义工具变量法和间接最小二乘法的参数估计量是等价的。比较二阶段最小二乘法和间接最小二乘法的参数估计量(3)与(2)。间接最小二乘法选取作为结构方程中解释变量的工具变量,二阶段最小二乘法选取的线性组合作为结构方程中内生解释变量的工具变量,选取作为自己的工具变量。这样使得关于二者参数估计量的正规方程组是不同的,分别为比较该两个正规方程组发现,后者可以由前者经过初等线性变换得到。而根据代数知识,初等线性变换不影响方程组的解。所以二阶段最小二乘法和间接最小二乘法的参数估计量是等价的。也可以对此进行严格证明。假设即两边同时左乘,有两边同时右乘,有该式显然成立。所以两种参数估计量是等价的的假设成立。结论是,对于恰好识别的结构方程,狭义工具变量法、间接最小二乘法和二阶段最小二乘法三种方法是等价的。6-15.三阶段最小二乘法的步骤用两阶段最小二乘法估计结构方程(1)得到方程随机误差项的估计值。首先采用OLS估计结构方程中内生解释变量的简化式模型得到于是用替换(1)中的,进行2SLS的第二阶段估计,得到的2SLS估计量和的2SLS估计量计算残差估计值为求的估计量根据计算公式计算得到:⑶对方程系统(2)其中应用广义最小二乘法,得到结构参数的3SLS估计量为:至此,完成了三阶段最小二乘法估计,同时得到所有方程的结构参数估计量。3SLS估计量比2SLS估计量更有效。3SLS方法主要优点是考虑了模型系统中不同结构方程的随机误差项之间的相关性。将3SLS估计量和2SLS估计量的分布进行比较,并根据Gauss-Markov定理,即可清楚看到这点。但是这是对大样本而言。对于有限样本情况下3SLS估计量和2SLS估计量的有效性比较,无法从数学上加以证明,可以通过MonteCarlo试验进行统计上的说明。6-16.联立方程计量经济学模型的估计方法分为两大类:单方程估计方法与系统估计方法。所谓单方程估计方法,指每次只估计模型系统中的一个方程,依次逐个估计。单方程估计方法主要解决的是联立方程模型系统中每一个方程中的随机解释变量问题,同时尽可能地利用单个方程中没有包含的、而在模型系统中包含的变量样本观测值的信息,没有考虑模型系统方程之间的相关性对单个方程参数估计量的影响。所谓系统估计方法,指同时对全部方程进行估计,同时得到所有方程的参数估计量,利用了模型系统的全部信息。显然,从模型估计的性质来讲,系统估计方法必然优于单方程方法,但从方法的复杂性来讲,单方程方法又优于系统估计方法。6-17.一个完备的结构式模型可以写成:或其中用n表示样本容量,则参数矩阵为:为结构参数矩阵。6-18.简化式模型的矩阵形式为:(1)其中表示简化式参数矩阵。将结构式模型作如下变换:与(1)比较,可以得到:(2)该式描述了简化式参数与结构式参数之间的关系,称为参数关系体系。6-19.(1)将题中结构式模型进行变量连续替代后得到(2)例如表示对的影响,即增加1个单位时对的影响。这种影响被分成两部分,其中前一项正是结构式方程中反映对的直接影响的参数,后一项反映对的间接影响。(3)结构参数矩阵为:模型系统中内生变量的数目为g=3,先决变量的数目为=3。首先判断第1个结构方程的识别状态。对于第1个方程,有又因为有:所以,第1个结构方程为过度识别的结构方程。再看第2个结构方程,有所以,该方程可以识别。并且所以,第2个结构方程为恰好识别的结构方程。第3个方程是平衡方程,不存在识别问题。综合以上结果,该联立方程模型是可以识别的。6-20.间接最小二乘法只适用于恰好识别的结构方程的参数估计,因为只有恰好识别的结构方程,才能从参数关系体系中得到唯一一组结构参数的估计量。6-21.对于联立方程模型的第1个结构方程(1)由于内生解释变量是随机变量,不能直接采用普通最小二乘法。但是对于的简化式方程,即简化式模型中的每个方程,不存在随机解释变量问题,可以直接采用普通最小二乘法估计其参数,并得到关于的估计值:这就是二阶段最小二乘法的第一阶段,即对简化式方程第一次使用普通最小二乘法。用的估计量替换(1)中的,得到新的方程显然,该方程中不存在随机解释变量问题,可以直接采用普通最小二乘法估计其参数,得到:这就是二阶段最小二乘法的第二阶段,即对变换了的结构式方程使用普通最小二乘法。得到的参数估计量即为原结构方程参数的二阶段最小二乘估计量。6-22.j=1,2…g其中g为内生变量数目,n为每个结构方程样本数目。6-23.(1)将方程写成标准形式:(2)用ILS方法估计方程参数,用(C,,,)依次作为(,C,,)的工具变量参数估计量的矩阵表达式为其中j=1,2,3j=2,3(3)用2SLS方法估计方程参数,的工具变量为C,,,的线性组合其中X=[C]参数估计量的矩阵表达式为6-24.(1)内生变量为,;外生变量为和常数项;先决变量为和常数项。(2)简化式模型为结构式参数与简化式参数之间的关系体系为(3)用结构式条件确定模型的识别状态;结构参数矩阵为:模型系统中内生变量的数目为g=2,先决变量的数目为=2(包括常数项)。首先判断第1个结构方程的识别状态。对于第1个方程,有所以,第1个结构方程为不可识别的结构方程。再看第2个结构方程,有所以,该方程可以识别。并且所以,第2个结构方程为恰好识别的结构方程。综合以上结果,该联立方程模型是不可识别的。(4)第一个结构方程包含了第二个结构方程所未包含的变量,这使得这两个方程的任意线性组合都不能构成与第二个方程相同的统计形式,所以第二个方程是可以识别的;而第二个结构方程没有包含第一个方程中所未包含的变量,这使得这两个方程的某些线性组合能构成与第一个方程相同的统计形式,导致第一个方程不可识别。例如,将两个方程相加并整理,得到:这与方程一有相同的统计形式。当我们收集了、和的样本观测值进行参数估计后,很难判断得到的是第一个方程的参数估计量还是新组合方程的参数估计量。(5)为了使模型可以识别,需要第二个方程包含一个第一个方程所未包含的变量,所以引入滞后一期的国内生产总值,模型变为可以判别,此时两个结构方程都是恰好识别的,这样模型是可以识别的。(6)如前所述,第一个方程式不可识别的,第二个方程是恰好识别的,所以可以用以上三种方法来估计第二个方程。6-25.下面为一个包含3个方程的中国宏观经济模型。此模型包含3个内生变量:国内生产总值、居民消费总额和投资总额;3个先决变量:政府消费(将净出口也包含其中,为了实现数据的平衡)、前期居民消费总额和常数项。完备的结构式模型为:t=1978,1979,…,2002样本观测值见表1,数据来自《中国统计年鉴》。表1中国宏观经济数据单位:亿元年份YCIG19783605.61759.11377.9468.6197940742005.41474.2594.419804551.32317.11590644.219814901.42604.11581716.319825489.22867.91760.2861.119836076.33182.52005888.819847164.43674.52468.61021.319858792.145893386817.1198610132.8517538461111.8198711784.75961.243221501.51988147047633.154951575.91989164668523.560951847.5199018319.59113.264442762.3199121280.410315.975173447.5199225863.712459.896363767.9199334500.715682.4149983820.3199446690.720809.819260.66620.3199558510.526944.5238777689199668330.432152.326867.29310.9199774894.234854.628457.611582199879003.336921.129545.912536.3199982673.139334.430701.612637.1200089340.942895.632499.813945.5200198592.945898.137460.815234.02002107514.248534.542355.416624.3一、模型的识别结构参数矩阵为:首先判断第1个结构方程的识别状态。对于第1个方程,有所以,该方程可以识别。又因为有:所以,第1个结构方程为恰好识别的结构方程。再看第2个结构方程,有所以,该方程可以识别。并且所以,第2个结构方程为过度识别的结构方程。第3个方程是平衡方程,不存在识别问题。综合以上结果,该联立方程模型是可以识别的。二、模型的估计用狭义的工具变量法估计消费方程选取消费方程中未包含的先决变量作为内生解释变量的工具变量,得到结构参数的工具变量法估计量:用间接最小二乘法估计消费方程消费方程中包含的内生变量的简化式方程为:参数关系体系为:用普通最小二乘法估计简化式方程,得到简化式参数估计量为:由参数关系体系计算得到结构参数间接最小二乘估计值为:用两阶段最小二乘法估计消费方程两阶段最小二乘法的第一阶段是用普通最小二乘法估计内生解释变量的简化式方程,得到:据此计算:替换结构方程中的,再用普通最小二乘法估计变换了的结构式方程,得到消费方程的两阶段最小二乘参数估计量为:比较上述消费方程的3种估计结果,证明这3种方法对于恰好识别的结构方程是等价的。估计量的差别只是很小的计算误差。用两阶段最小二乘法估计投资方程投资方程是过度识别的结构方程,只能用两阶段最小二乘法估计。估计过程与上述两阶段最小二乘法估计消费方程的过程相同。年份I19791474.25895.456198015906288.445198115816826.68719821760.27675.653198320057981.02319842468.68793.447198533868209.9191986384610163.861987432212321.111988549513194.461989609515562.651990644420294.621991751723786.091992963626053.0919931499827756.46199419260.642580.319952387750905.53199626867.262413.16199728457.676212.1199829545.982362.1199930701.684230.62200032499.891778.61200137460.8100022.5200242355.4108342.8得到投资方程的参数估计量为:至此,完成了该模型系统的估计。第八章宏观计量经济学模型一、内容提要宏观经济模型在宏观总量水平上把握和反映经济运行的全面特征,研究宏观经济主要指标间的相互依存关系,描述国民经济和社会再生产过程各环节之间的联系。可用来进行宏观经济的结构分析、政策评价、决策研究和发展预测。本章主要讨论了宏观计量经济模型的设定理论,并对中西方宏观计量经济模型进行了综述。本章学习的一个重点是宏观计量经济模型的设定理论。首先是宏观经济模型的分类,可以按建模方法分类,分为计量经济学模型、投入产出模型、优化模型、经济控制论模型、系统动力学模型等;可以按建模目的分类,分为预测模型、决策模型、专门模型;可以建模范围分类,分为国家模型、地区模型、国家间模型等;可以按时间长度分类,分为季度模型、年度模型和中长期模型等。其次讨论传统宏观计量经济模型的设定问题,包括基本设定理论与模型设定方法,前者涉及到从经济理论的提出,到模型的估计与检验等方面的问题;后者主要讨论了从简单到复杂以及从一般到简单的两类建模方法。再次,从宏观经济环境、宏观经济决策方式、经济核算体系三个方面讨论了影响宏观计量经济模型设定的主要因素。最后讨论了模型的外生性程度的决定、分解性程度的决定以及建模的工作程序。本章学习的另一个重点是对中西方宏观经济模型的综述。对西方国家的经济模型的发展历程、建立模型的经济理论、模型的规模、特征等方面进行了综述后,着重介绍了美国的一个小型宏观模型——Klein战争间模型与一个中型模型——Klein-Goldberger模型。对中国宏观计量经济模型主要讲述了发展历程与基本特征,并以两个中国不同时期的宏观计量模型为例,描述了模型的总体结构、主要模块的设立以及主要方程的建立及其特征。二、习题8-1.解释下列概念:宏观计量经济模型外生性程度分解性程度SNA核算体系MPS核算体系需求导向供给导向混合导向8-2.简述在本书中“宏观经济模型”与“宏观计量经济模型”的区别;与其他类型的宏观经济模型相比,宏观计量经济模型的特点是什么?8-3.简述宏观经济环境、宏观经济决策方式以及国民经济核算体系对宏观计量经济模型设定的影响。8-4.简述国民经济系统与模型之间的关系。8-5.什么是模型的导向?模型导向是由什么决定的?模型导向有哪些类型?这些导向在模型中如何体现?8-6.简述建立宏观计量经济模型的基本理论依据。8-7.简述宏观计量经济模型的结构功能。为什么宏观计量经济模型必须具备一定的分解性程度?模型的分解程度重要受哪些因素影响?8-8.什么是模型的外生程度?确定模型的外生程度主要应考虑哪些因素?8-9.根据Klein-Goldberger模型的方程体系画出模型的总体结构框图,并说明为该模型在总体结构方面的特点。8-10.试设计一个简单的中国宏观计量经济模型总体结构框图。8-11.试指出在目前建立中国宏观计量经济模型时,下列内生变量应该由哪些变量来解释?简单说明理由,并拟订关于每个解释变量的待估参数的正负号:(1)轻工业增加值(2)居民消费总额(3)衣着类商品价格指数(4)货币发行量(5)农业生产资料进口额(6)国家财政教育经费支出额(7)出口总额(8)工业固定资产原值(9)职工工资总额(10)全社会国有经济固定资产投资总额8-12.以下列国民经济主要指标为内生变量,设计一个中国宏观计量经济模型的总体结构框图,建立一个包含8个方程的完备的理论模型(不需要估计),并保证模型具有可识别性。内生变量为:国内生产总值财政收入居民收入企业收入最终消费总额资本形成总额全社会固定资产原值全社会就业人数三、习题参考答案8-1.1)宏观计量经济模型:应用计量经济学方法建立的宏观经济模型,它是宏观经济模型中的一类。2)外生性程度:所谓外生性程度,简单说就是模型中外生变量与内生变量数目之间的比例。3)分解性程度:所谓分解性程度,简单说就是模型中的总量分解水平。4)SNA核算体系:指国民经济帐户体系,包括若干张基本核算平衡表与若干类帐户。5)MPS核算体系:指物质产品平衡体系,主要包括若干张基本核算平衡表。6)需求导向:指模型的设定以需求为驱动力。7)供给导向:指模型的设定以供给为驱动力。8)混合导向:指模型的设定以需求与供给为双向驱动力。8-2.答:宏观经济模型是在宏观总量水平上把握和反映经济运动的全面特征,研究宏观经济主要指标间的相互依存关系,描述国民经济和社会再生产过程各环节之间的联系,并可以用以进行宏观经济的结构分析、政策评价、决策研究、和发展预测。宏观计量经济模型是应用计量经济学方法建立的宏观经济模型,它是宏观经济模型中的一类。这是一类最广泛的宏观经济模型,或者说计量经济学方法是建立宏观经济模型的最主要的方法,国内外的宏观经济模型,绝大部分属于计量经济学模型。因为计量经济学模型揭示了宏观经济的行为理论和运行规律,揭示了经济现象中的因果关系,所以它具有很好的应用价值。由于计量经济学方法的高度灵活性,所以可以用以建立各类不同的宏观经济模型,这是其他建模方法不能比拟的。8-3.答:1.宏观经济环境对模型设定的影响这里所说的宏观经济环境,主要是指宏观经济总体上讲是处于需求导向还是供给导向,通俗讲是需求不足还是供给不足。在需求不足的环境下,需求成为经济增长的主要制约,刺激需求成为宏观经济政策的主要目标。描述这种宏观经济环境的宏观计量经济模型,从总体结构上讲,需求模块,包括消费、投资、出口,成为第一的和最重要的模块;从模型的个体结构上讲,主要方程的解释变量都是从需求方面来解释。在供给不足的环境下,供给成为经济增长的主要制约,刺激生产成为宏观经济政策的主要目标。描述这种宏观经济环境的宏观计量经济模型,从总体结构上讲,生产模块,包括消费资料、生产资料、服务的生产,成为第一的和最重要的模块;从模型的个体结构上讲,主要方程的解释变量都是从投入方面来选择。绝对的需求不足和供给不足对许多宏观经济模型并不适用,于是出现了供需双约束的情况,尤其在个体模型的设定时需要从供需双方选择解释变量。2.宏观经济决策方式对模型设定的影响宏观经济决策方式主要分为以集中决策为主和以分散决策为主两类。前者是计划经济体制的重要体现,后者则是市场经济体制的主要反映。在市场经济体制下,资源是由市场配置的,关于资源配置的决策是分散的。而分散决策的决策目标是效益最大化,决策的导向是需求,价格是由供求关系决定的。这种决策方式对宏观计量经济模型的总体结构和个体结构都将产生影响。在计划经济体制下,资源是由计划配置的,关于配置资源的决策是集中的。这些也将在宏观计量经济模型的总体结构和个体结构中得到反映。同样,绝对的集中决策和分散决策在实际经济生活中也不多见,无非是以哪一种决策为主的问题。所以在许多宏观计量经济模型中,出现了两种决策方式共存的情况,尤其在不同的个体模型的设定时需要分析各自的决策方式。3.经济核算体系对模型设定的影响宏观计量经济模型是在一定的核算体系基础上建立起来的。由指标体系组成的核算体系反映宏观经济的运行过程和状态,是宏观计量经济模型的数据来源,是设定宏观计量经济模型的重要依据。核算体系的结构直接影响宏观计量经济模型的总体结构和个体结构。一个宏观计量经济模型只能以一种核算体系为参考系来设计,当然可以包括另一核算体系的主要指标的计算。核算体系对宏观计量经济模型的影响在于指标体系以及主要指标的核算方法。模型中主要变量的设置必须与指标体系中的主要指标相一致;模型中模块和方程之间的关系必须与核算体系中指标的核算方式相一致。8-4.国民经济系统包括了生产、流通、分配各环节,宏观经济模型就是要对各环节的行为方式做出定量描述,因此国民经济系统与模型之间的关系是一种现实与理论抽象的关系,可以一一对应起来。8-5.模型导向主要指模型设定时是以“谁”为驱动力,如果按西国家的多数宏观模型的设定看,多数都以Keynes的国民收入决定理论为基础的,因此是需求导向型的。而是中早期的宏观模型,主要以生产函数的估计为GDP的主要形成方式,因此基本为要素驱动型的。模型导向主要以现实的宏观经济运行密切相关,还与数据有采集、理论的设定等因素有关。模型导向主要有需求导向、供给导向以及混合导向三种类型。这些导向在模型中的体现以形成GDP的具体方程为其表现。一般地,如果是从需求方形成GDP方程,则为需求导向型,如果以生产方形成GDP,则为供给导向型。8-6.答:宏观计量经济模型的基本理论形成于20世纪40年代,大部分基础性工作是由美国考尔斯经济研究委员会完成的。其基本理论可以概括为以下几点:1)依据某种已经存在的经济理论或者已经提出的对经济行为规律的某种解释设定模型的总体结构和个体结构,即模型是建立在已有的经济理论和经济行为规律假设的基础上的;2)引进概率论思想作为模型研究的方法论基础,选择随机联立线性方程组作为模型的一般形式;3)模型的识别、参数的估计、模型的检验是主要的技术问题;4)以模型对样本数据的拟合优度作为检验模型的主要标准。8-7.答:宏观计量经济模型是在宏观总量水平上、用联立方程计量经济学模型把握和反映经济运动的全面特征,反映主要指标间的相互依存关系,描述经济系统和社会再生产过程各环节之间的联系。选择合适的总量分解水平是建立宏观计量经济模型中的一个重要问题,把它称为模型分解性程度。具有较高的分解程度的模型具有以下优点:1)模型能较好地反映客观存在的结构现象,在应用中具有较好的结构功能。2)方程能较好的反映经济行为。3)模型的样本期模拟经度和样本期外的预期经度都较高。4)可以使偏差多样化和分散化。较高的分解性程度又带来一些问题。一是数据收集和调整的工作量和难度增大;二是模型包含了更多的方程,会带来更大的方程设定误差。因此在实际建立模型时关键时找到一种平衡,选择合适的模型分解性程度。模型分解性程度受到如下因素的影响:1)宏观经济中的结构性变化。宏观经济是由各个部分组成的,各个组成部分又由更细的部分组成,它们各自在宏观总量中的地位称为结构。2)建模目的的影响。用于预测的模型,必须具有较好的结构功能,才能适应结构变化情况下预测的需要,因此具有较高的分解性程度。用于进行政策评价的模型,尤其对宏观经济政策进行评价,目的在于对不同政策方案的宏观经济结果进行比较,不需要过高的分解性。对于某些专门模型,局部分解性程度高些,其他部分趋于总量化。3)模型规模的限制。分解性程度越高,模型规模越大。而模型规模受到其他因素的制约,例如样本数据的搜集问题,模型研制时间和经费问题等。8-8.答:所谓外生性程度,简单说就是模型中外生变量与内生变量数目之间的比例。选择合适的外生性程度,是宏观计量经济模型设定中的一个重要问题。影响外生性程度的因素1)模型的功能。建立模型的目的不同,模型中的外生变量的设置也不相同。对于预测模型,模型中的外生变量应尽可能的少;而对于决策模型,为了便于进行不同政策方案的模拟计算与比较,外生变量的数目一般比较多。2)决策方式。不同的决策方式对模型有显著影响,在集中决策下,许多变量是由决策者从外部强加给经济系统的,所以一般集中决策体制下的宏观计量经济模型比分散体制下的模型具有较多的外生变量。3)可解释性。所谓可解释性是指能否建立关于某个内生变量的解释方程,并对其进行较准确的解释。有些变量,从行为上分析,应该是由经济系统内生决定的,但是在建立模型时又很难得到质量比较好的模型,在这种情况下,将其作为外生变量会收到更好的效果。4)样本容量。在估计联立方程模型时,对某些方法(如2SLS法)来说,若模型系统的外生变量较多,则很难保证有足够的样本容量。第七章单方程计量经济学应用模型一、内容题要本章主要介绍了若干种单方程计量经济学模型的应用模型。包括生产函数模型、需求函数模型、消费函数模型以及投资函数模型、货币需求函数模型等经济学领域常见的函数模型。本章所列举的内容更多得关注了相关函数模型自身的发展状况,而不是计量模型估计本身。其目的,是使学习者了解各函数模型是如何发展而来的,即掌握建立与发展计量经济学应用模型的方法论。生产函数模型,首先介绍生产函数的几个基本问题,包括它的定义、特征、发展历程等,并对要素的替代弹性、技术进步的相概念进行了归纳。然后分别以要素之间替代性质的描述为线索与以技术要素的描述这线索介绍了生产函数模型的发展,前者包括从线性生产函数、C-D生产函数、不变替代弹性(CES)生产函数、变替代弹性(VES)生产函数、多要素生产函数到超越对数生产函数的介绍;后者包括对技术要素作为一个不变参数的生产函数模型、改进的C-D、CES生产函数模型、含体现型技术进步的生产函数模型、边界生产函数模型的介绍。最后对各种类型的生产函数的估计以及在技术进步分析中的应用进行了了讨论。与生产函数模型相仿,需求函数模型仍是从基本概念、基本特性、各种需求函数的类型及其估计方法等方面进行讨论,尤其是对线性支出系统需求函数模型的发展及其估计问题进行了较详细的讨论。消费函数模型部分,主要介绍了几个重要的消费函数模型及其参数估计问题,包括绝对收入假设消费函数模型、相对收入假设消费函数模型、生命周期假设消费函数模型、持久收入假设消费函数模型、合理预期的消费函数模型适应预期的消费函数模型。并对消费函数的一般形式进行了讨论。在其他常用的单方程应用模型中主要介绍了投资函数模型与货币需求函数模型,前者主要讨论了加速模型、利润决定的投资函数模型、新古典投资函数模型;后者主要讨论了古典货币学说需求函数模型、Keynes货币学说需求函数模型、现代货币主义的货币需求函数模型、后Keynes货币学说需求函数模型等。二、典型例题分析例1:某工业企业资料如下表。试估计该企业的生产函数表某工业企业资料单位:亿元,千人年份总产值(Y)职工人数(L)固定资产原值+定额流动资金余额(K)1978457.71175.77203.931979493.62177.73207.021980514.72184.32207.931981518.84189.86214.371982524.72195.27222.551983536.63199.00242.961984584.04206.57268.531985661.58211.61321.181986722.38213.15442.271987777.11212.57208.061988895.98213.61576.1119891027.78213.05660.11解答:先估计C-D生产函数。方法1:对数线性形式的OLS估计Eviews的估计结果如下:VariableCoefficientStd.Errort-StatisticProb.C-4.0326742.877252-1.4015710.1946LOG(K)0.3236680.1076273.0073110.0148LOG(L)1.6315430.6173562.6427910.0268R-squared0.853757Meandependentvar6.433934AdjustedR-squared0.821259S.D.dependentvar0.257981S.E.ofregression0.109069Akaikeinfocriterion-1.381358Sumsquaredresid0.107064Schwarzcriterion-1.260132Loglikelihood11.28815F-statistic26.27080Durbin-Watsonstat1.511124Prob(F-statistic)0.000175即:方法2:强度形式的OLS估计Eviews的估计结果如下:VariableCoefficientStd.Errort-StatisticProb.C0.9826780.04911320.008400.0000LOG(K/L)0.4339440.0955424.5419330.0011R-squared0.673514Meandependentvar1.141232AdjustedR-squared0.640865S.D.dependentvar0.199696S.E.ofregression0.119674Akaikeinfocriterion-1.257086Sumsquaredresid0.143218Schwarzcriterion-1.176268Loglikelihood9.542515F-statistic20.62916Durbin-Watsonstat1.883136Prob(F-statistic)0.001072即:由参数的显著性看,方法二得到的生产函数更好一些。再估计CES形式的生产函数:Eviews的估计结果如下:VariableCoefficientStd.Errort-StatisticProb.C-4.1871041.420270-2.9481040.0185LOG(K)-0.6905550.195834-3.5262190.0078LOG(L)2.7002120.3636967.4243570.0001(LOG(K/L))^20.8962690.1665725.3806760.0007R-squared0.968339Meandependentvar6.433934AdjustedR-squared0.956466S.D.dependentvar0.257981S.E.ofregression0.053828Akaikeinfocriterion-2.744861Sumsquaredresid0.023179Schwarzcriterion-2.583226Loglikelihood20.46917F-statistic81.55796Durbin-Watsonstat1.018731Prob(F-statistic)0.000002由此可计算各参数:m=2.0097,1=-0.3436,2=1.3436,=0.4118由于分配系数1<0,因此这一估计结果的经济含义不正确,需进一步修正。例2、使用中国某年的截面家计调查资料,求恩格尔曲线。表某地某年职工家庭收支调查资料单位:10元/月按人均月收入分组人均生活费支出Y人均总支出人均消费食品衣着燃料用品非商品20以下20.0021.1414.212.100.661.501.3220~2521.7622.9214.812.120.803.062.1325~3027.9623.4919.313.360.652.572.6030~3532.7031.7520.154.000.703.962.9435~4037.6037.7423.035.190.785.203.5440~4542.3040.7324.914.860.816.313.8445~5047.8645.1826.746.770.726.844.2250~5552.7050.1331.046.40.977.923.8055~6056.7654.8934.566.741.008.324.3960以上67.0263.6737.328.791.0811.005.48平均数43.3541.9825.985.20.816.183.68假定恩格尔曲线为线性函数其中,为第种商品人均消费量,即需求量,Y为人均生活费支出,通过OLS法,可分别得出食品、衣着、燃料、用品和非商品五个类别的恩格尔曲线:商品类别ttFD.W.食品4.084.440.5123.750.9860.984564.42.19衣着-0.58-1.430.1414.740.9640.960217.32.79燃料0.486.110.0084.450.7120.67619.832.06日用品-2.00-4.360.18817.760.9750.972315.282.88非商品0.381.180.0710.040.9270.917100.91.36例3、利用例2中的资料,求扩展的线性支出系统模型解答:第1步,估计中的参数:=1.874,=0.9096第2步,计算=I-20.73第3步,逐次回归,求各商品的需求函数估计结果如下:食品衣着燃料日用品非商品14.5402.2800.6541.1931.9290.5040.1380.0080.1880.0740.5530.1510.00870.2060.081如对食品的扩展的消费支出需求函数为:线性支出系统可用来分析收入变化,物价变化对消费需求结构的影响。如消费支出构成为:例如,如果月均收入有所变化,如分别为80元,100元,120元,各项消费结构变化如下:人均月收入(元)人均消费总支出(元)食品支出比重(%)衣着支出比重(%)燃料支出比重(%)日用品支出比重(%)非商品支出比重(%)8074.6659.4814.011.5116.538.4610092.8858.6614.231.3917.338.39120111.1658.1014.381.3017.878.34三、习题7-1.解释下列概念:C—D生产函数CES生产函数VES生产函数要素替代弹性要素的产出弹性技术进步需求函数需求的价格弹性需求的收入弹性需求的交叉弹性效用函数消费函数投资函数货币需求函数PAGE2.为什么要讨论计量经济分析的应用?体会经济理论与实际建模之间的关系。7-3.试写出需求函数的常见形式,并对影响需求的主要因素进行分析。7-4.以投入要素之间替代性质的描述和对技术要素的描述为线索对已有的生产函数模型进行综述,并从中体会经济研究的方法论。7-5.在选择模型类型、变量和函数形式时,各应考虑哪些因素?7-6.解释ELES模型中各个组成部分及整个模型的经济含义,试根据《中国统计年鉴》提供的城乡居民消费支出和收入的横截面统计资料,建立ELES模型并进行消费需求分析。7-7.简述C—D生产函数和CES生产函数的特点以及各自的估计方法,熟练应用C—D、CES生产函数模型及其改进型。7-8.技术进步有哪些类型?如何利用生产函数进行纵向技术进步分析和横向技术进步比较研究?7-9.消费函数与需求函数的研究内容有何不同?熟悉消费者行为理论的几种基本假说及由其导出的消费函数模型,能够解释各种消费函数的理论模型并推导出模型的一般形式。7-10.弹性分析的意义和在经济分析中的作用是什么?7-11.总投资由哪两部分组成?投资函数主要用于研究什么问题?7-12.投资的加速模型有哪些形式?解释各自的原理及模型的推导过程。7-13.理解确定型统计边界生产函数及其COLS估计。7-14.在估计生产函数模型时,为什么样本数据的可比性显得尤其重要和突出?7-15.理解需求弹性和需求函数的齐次性条件;如何应用它们检验需求函数模型参数估计量?7-16.指出下列模型中所要求的待估参数的经济含义和数值范围:⑴城镇居民食品类需求函数μ中的、、(V为人均购买食品支出额、Y为人均收入、为食品类价格、为其它商品类价格)。⑵消费函数中的、。(C为人均消费额、Y为人均收入)⑶两要素CES生产函数的近似形式中的γ、ρ、m。(Y为产出量,K、L分别为投入的资本和劳动数量,t为时间变量)7-17.设为当期消费,为上期消费,为可支配收入,为物价指数。试由相对收入假说构造消费函数。7-18.当我们说消费者无货币幻觉时,是指需求函数具有哪一种性质?7-19.已知某城市1985年城市居民家庭人均收支抽样调查资料如下表所示:收入阶层123456人均生活费收入(元/月)56010121215134716161860人均消费支出(元/月)552.84991.801170.241282.081648.441811.88其中:食品309.60516.96616.68698.28867.961010.52衣着79.08150.00160.20182.88249.46211.80用品101.28223.68276.84261.00378.60421.20燃料4.205.525.645.045.405.04非商品支出58.6895.64110.88134.88147.24163.32要求:推导出该市居民人均消费的线性支出系统。7-20.设有两种商品,价格分别为和。效用函数为其中:——第种商品需求量——第种商品基本需求量,设总预算支出为。要求:推导出线性支出系统。7-21.已知某企业1980~1990年有关统计资料如下表所示:年份职工人数L资金占用额K工业总产值Y1980100.00100.00100.001981117.74118.54131.811982116.60125.07165.621983119.99218.08205.001984119.62291.85175.651985121.51339.76217.891986126.79365.59233.791987149.48398.54281.481988171.32398.62301.051989209.43344.39378.621990257.36355.19409.79要求:试参照C—D生产函数形式和CES生产函数形式分别确定模型,对模型进行估计,并说明哪一个模型更适当?7-22.某市纺织工业总产值、固定资产、职工人数统计资料如下表所示:年份总产值Y(亿元)固定资产K(亿元)年末职工人数L(万人)人)人198765.4115.0438.52198869.4215.2138.33198977.1215.8638.01199081.1616.6037.60199184.7117.4638.43199287.9718.1238.64199397.3818.8539.161994108.1619.6339.761995117.3320.3043.351996130.8821.1945.74要求:(1)估计该市纺织工业部门的C—D生产函数(2)求1987~1996年10年间平均的技术进步贡献率。7-23.已知某企业工业增加值Q(万元,当年价)、职工总数L(人)、固定资产净值+流动资金净值K(万元)的数据如下表所示:年份QLK19801572321941981158290179198215330622319831712952291984210308403198527956175619863474851225198742853817481988871826216519891071541280119901382550312019911535959373219921887145348021993258514605655199449741960739619959840261311919要求:(1)建立C—D生产函数,用各种统计量检验估计结果;(2)解释各参数估计值的经济意义,并说明此企业的规模效益如何?(3)建立CES生产函数,并将两生产函数进行比较。7-24.将商品分成食品、衣着、日用品、住房、燃料、文化生活服务六大类,建立如下的线性支出系统需求模型:其中:——人均购买第类商品的支出;——第类商品的价格;——第类商品的基本需求量;——总支出根据调查资料,利用最小二乘法估计参数结果如下表所示:1食品2衣着3日用品4住房5燃料6服务0.380.090.180.310.020.02120201518105假设人均总支出。要求:根据模型计算各类需求的生活消费支出弹性,即生活消费总支出增加1%时各类需求量的相对变化率。7-25.设其中:——人均食品消费量,——食品价格;——人均可支配收入。已知如下的样本二阶矩:7.593.1226.993.1229.1630.0826.9930.80133.00假设需求函数模型为要求:估计需求的收入弹性和价格弹性。7-26.CES生产函数与C—D生产函数的关系是什么?请证明之。7-27.证明:模型中的及的最小二乘估计量是对和的固定不变的偏弹性估计量。7-28.已知美国的经济数据如下表所示:(单位:10亿,1992年美元)年份CY年份CY19591394.61533.919762714.33017.619601432.61569.219772829.83115.419611461.51619.419782951.63276.019621533.81697.519793020.23365.519631596.61759.319803009.73385.719641692.31885.819813046.43464.919651799.12003.919823081.53495.619661902.02110.619833240.63592.819671958.62202.319843407.63855.419682070.22302.119853566.53972.019692147.52377.219863708.74101.019702197.82469.019873822.34168.219712279.52568.319883972.74332.119722415.92685.719894064.64416.819732532.62875.219904132.24498.219742514.72854.219914105.84500.019752570.02903.619924219.84626.7资料来源:《当代企业调查》(美国),1997(5)其中:C——个人消费支出;Y——个人可支配收入。要求:利用该表中数据尝试建立各种形式的消费函数模型,并指出建模过程中可能遇到的问题,如何解决?7-29.某人试图建立我国有色金属行业生产方程,选择如下变量及关系形式产值=固定资产原值+职工人数+电力消耗量+μ选择1978~1996年年度数据为样本观测值,采用OLS方法估计参数,样本观测值的计量单位为:产值采用不变价计算的价值量,固定资产原值采用形成年当年价计算的价值量,其它采用实物量单位。指出该计量经济学问题中可能存在的错误,并简单说明理由。7-30.选择两要素一级CES生产函数的近似形式建立中国电力行业的生产函数模型:其中Y为发电量,K、L分别为投入的资本与劳动数量,t为时间变量,以时间序列数据为样本。⑴指出模型对要素替代弹性的假设,并指出它与C-D生产函数、VES生产函数在要素替代弹性假设上的区别;⑵指出模型对技术进步的假设,并指出它与下列生产函数模型在技术进步假设上的区别;⑶如Y、L的样本数据采用实物量,问能否直接采用统计年鉴中的固定资产原值数据作为K的样本数据?为什么?如用OLS估计参数,通常容易违背哪一类基本假设?四、习题参考答案7-1.1)C—D生产函数:,其中A为效率系数,是广义技术进步水平的反映,参数、分别是资本与劳动的产出弹性。(>0,,)2)CES生产函数:不变替代弹性生产函数,其中A为效率系数,和为分配系数,满足+=1,为替代参数,m为规模报酬参数。(>0,,,并且满足+=1,当时,表明研究对象是规模报酬不变(递减、递增)的,)3)VES生产函数:变替代弹性生产函数Revankar在1971年提出的:假定,得出Sato与Hoffman(1968)提出的:假定,得出4)要素替代弹性要素替代弹性,是描述投入要素之间替代性质的一个量,主要用于描述要素之间替代能力的大小。要素替代弹性是两种要素的比例的变化率与边际替代率的变化率之比,一般用表示,5)要素的产出弹性某投入要素的产出弹性被定义为:当其它投入要素不变时,该要素增加1%所引起的产出量的变化率。是从动态变化的角度衡量生产要素对产出量的影响的指标。如果用表示资本的产出弹性,用表示劳动的产出弹性,则有:一般情况下,要素的产出弹性大于0小于1。6)技术进步从本质上讲,生产函数所描述的是投入要素与产出量之间的技术关系。即是说,同样的投入要素组合,在不同的技术条件下,产出量是不同的。技术进步描述的是在投入要素相同的情况下,产出的变化。7)需求函数需求函数是描述商品的需求量与影响因素,例如收入、价格、其它商品的价格等,之间关系的数学表达式。即其中,为对第种商品的需求量;为收入;为各种商品的价格;为商品数目。一般来讲,影响需求量的主要是收入与价格;对于一些特定的商品和特定的情况,也会在需求函数中引入其它的解释变量,例如耐用品的存量、一般消费品的消费习惯等。总之,需求函数反映了商品的需求行为和需求规律,反映了解释变量与被解释变量之间的因果关系,所以可以用于需求的结构分析和需求预测。8)需求的价格弹性需求的价格弹性包括自价格弹性和互价格弹性两种。需求的自价格弹性是当收入和其它商品的价格不变时,第种商品价格变化1%所引起的第种商品需求量的变化百分比。即需求的互价格弹性是当收入和其它商品的价格不变时,第种商品价格变化1%所引起的第种商品需求量的变化百分比。即9)需求的收入弹性需求的收入弹性是当所有商品的价格不变时,收入变化1%所引起的第种商品需求量的变化百分比。即10)需求的交叉弹性11)效用函数效用函数分直接效用函数和间接效用函数两大类。直接效用函数将效用表示为商品需求量的函数。即间接效用函数将效用表示为收入和商品价格的函数。即12)消费函数消费函数模型是关于研究对象的总消费与影响因素,主要是可支配的总收入之间关系的数学表达式,是计量经济学模型中一个重要组成部分。13)投资函数投资函数模型是投资与决定投资的诸因素之间关系的数学描述,也是一定的投资行为理论的数学描述。14)货币需求函数货币需求函数模型是货币需求与决定货币需求的诸因素之间关系的数学描述,在不同的假说下有不同的数学形式。7-2.通过对计量经济模型的分析及应用可以加深对理论的理解,并掌握建立与发展计量经济学应用模型的方法论。7-3.⒈线性需求函数模型线性需求函数模型将商品的需求量与收入、价格、其它商品的价格等影响因素之间的关系描述为直接线性关系。即⒉对数线性需求函数模型 由于它具有合理的经济解释,参数具有明确的经济意义,所以是一种常用的需求函数模型。它的数学表达式为:

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论