版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第五章恒定电流的磁场主要内容一磁感应强度二毕-沙定律及其应用三恒定电流磁场的安培环路理四带电粒子在磁场中的运动五霍尔效应六磁场对载流导体的作用第五章恒定电流的磁场主要内容一磁感应强度1教学要求:熟练运用洛伦兹力公式计算运动电荷在均匀磁场中的受力(大小,方向及相关的运动)
理解霍尔电压表达式及其内涵,会判断载流子的正负。熟练运用安培力公式计算直线电流、圆形电流、圆弧电流在均匀、非均匀磁场中的受力。
会计算载流线圈或旋转带电体的磁矩及其在均匀磁场中所受的力矩。教学要求:熟练运用洛伦兹力公式计算运动电荷在均匀磁场中21819年奥斯特磁铁电流运动电荷相互作用力叫磁力电流的磁效应磁现象是怎么产生的呢?实验和近代理论表明:一切磁现象起源于电荷的运动,运动的电荷在空间激发磁场,磁场对运动电荷有磁场力的作用
————磁现象的电本质一磁力与电荷的运动安培假说5.1磁现象和电磁感应强度1819年奥斯特磁铁电流运动电荷相互作用力叫磁力电流的磁3圆形电流的磁力线直线电流的磁力线I螺绕环的磁力线螺线管的磁力线圆形电流的磁力线直线电流的磁力线I螺绕环的磁力线螺线管的磁力4蹄形磁铁的磁力线条形磁铁的磁力线NS条形与蹄形磁铁同级相对条形与蹄形磁铁异级相对蹄形磁铁的磁力线条形磁铁的磁力线NS条形与蹄形磁铁同级相对条5磁场是一种类似电场的物质形态磁场的基本特征:对于处于磁场中的运动电荷有磁场力的作用研究对象:稳恒电流产生的磁场——稳恒磁场(静磁场)学习方法:与静电场——对比磁场是一种类似电场的物质形态磁场的基本特征:对于处于磁场中的6静电场静磁场产生描述图示基本定律基本性质方程电力线磁力线静止电荷q(dq)运动电荷I(Idl)毕——萨定律库仑定律叠加原理:静电场静磁场产生描述图示基本定律基本性质方程电力线磁力线静止7(2)磁作用力F还与粒子的运动方向有关,在一定的方向时F最大为Fm。用磁感应强度描述磁场各点的磁特性.(1)在磁场中某点运动的电荷,所受磁作用力,与电荷量q,速度的大小v成正比。B的单位:特斯拉(T)二磁场与磁感应强度运动电荷磁场运动电荷1磁力(洛伦兹力)大小:
B=F/qvsin方向:+q
-q(2)磁作用力F还与粒子的运动方向有关,在一定的方向时F最8三磁力线磁通量磁场的高斯定理1.磁力线
的图示——磁力线通过垂直于磁感应强度单位面积上的磁力线条数等于该处磁感应强度的大小●规定:磁感应强度的方向2磁感应强度的叠加原理三磁力线磁通量磁场的高斯定理1.磁力线的图示9磁感应线,INS线磁力线的性质无头无尾闭合曲线与电流套连,与电流形成闭合曲线与电流成右手螺旋关系磁感应线,INS线磁力线的性质无头无尾闭合曲线与电流套连,10二.磁通量设磁场某一点磁感应强度为意义:穿过面元的磁力线条数单位:韦伯(Wb)---磁场的高斯定理无源场二.磁通量设磁场某一点磁感应强度为意义:穿过面元11如图所示,一根通电导线中电流方向向右,问导线外一点P处磁场方向?ABFEDCIP×#1a0601001aF如图所示,一根通电导线中电流方向向右,问导线ABFEDCIP12一通电线圈,电流方向如图所示,问:线圈内部磁场方向?ABFEDC#1a0601001bC一通电线圈,电流方向如图所示,问:线圈内部磁场方向?ABFE13如图所示,两根通电导体平行放置,电流大小相等方向相反,问:两导体正中P点处的磁场方向:A.
纸面向内B.
纸面向外C.
向左D.
向右E.
无磁场P#1a0601002aA如图所示,两根通电导体平行放置,电流大小相等方向相反,问:两14如图:有一半圆环形回路,通以电流I,问:圆心P点处磁场方向:A.
纸面向内B.
纸面向外C.
向左D.
向右E.
无磁场P#1a0601002bB如图:有一半圆环形回路,通以电流I,问:圆心P点处磁场方向:15如图,有三个闭合回路,通以相同电流I,比较O点处三个回路在O点磁场强度大小:rRrRrR回路a回路b回路cA.
a>b>cB.
a>c>bC.
b>c>aD.
b>a>cE.
c>b>aF.
c>a>b#1a0601002cE如图,有三个闭合回路,通以相同电流I,比较O点处三个回路在O16
如图四根长直导线相距均为R,通有电流均为I,则与它们等距离的O点的磁场:A.0B.,方向水平向左C.,方向水平向右D.,方向竖直向上E.,方向竖直向下F.,方向竖直向上#1a0601003aA如图四根长直导线相距均为R,通有电流均为I,则与它们等距17A.0B.,方向水平向左C.,方向水平向右D.,方向竖直向上E.,方向竖直向下F.,方向竖直向上
如图四根长直导线相距均为R,通有电流均为I,则与它们等距离的O点磁场:#1a0601003bBA.0如图四根长直导线相距均为R,通有电流均为I,则与18A.0B.,方向水平向左C.,方向水平向右D.,方向竖直向上E.,方向竖直向下F.,方向竖直向上如图四根长直导线相距均为a,通有电流均为I,则与它们等距离的O点磁场:#1a0601003cEA.0如图四根长直导线相距均为a,通有电流均为I,则19Pd*如图所示,问该通有电流的组合体在P点的磁场是:A.,方向垂直向里B.,方向垂直向外C.,方向垂直向里D.,方向垂直向外E.
0#1a0601004aPd*如图所示,问该通有电流的组合体在P点的磁场是:A.20例1.一无限长直导线通有电流I,一长h
宽为
b的矩形面积距导线距离为
a,求通过矩形面积的磁通量。解:
I
h
b
a由磁通量的定义其法线方向垂直向外方向如图示例1.一无限长直导线通有电流I,解:Ihba由磁21通过如图所示的半球壳的磁通量
A.B.C.D.0R#1a0601012aB通过如图所示的半球壳的磁通量A.R#1a060101222●
方向方向总垂直于和构成平面且构成右手螺旋系,
5.2
毕奥—萨伐尔定律大小写成等式(SI)为真空中的磁导率T•m/A毕——萨定律●方向方向总垂直于和23毕——萨定律的应用例1.载流长直导线的的磁场。设有长为L的载流导线,其中电流为I。计算离直导线距离为d的P点的磁感应强度。解:●大小方向垂直向里毕——萨定律的应用例1.载流长直导线的的磁场。设有长为L的24●●25方向:垂直向里讨论:无限长载流导线●思考:半无限长载流直导线磁场如何?方向:垂直向里讨论:无限长载流导线●思考:半无限长载流直导线26设有一半径为R的圆形线圈,通以电流I任取以电流元是电流元指向场点的矢径解:●●二载流圆线圈轴线上的磁场大小方向垂直和决定的平面设有一半径为R的圆形线圈,通以电流I任取以电流元是电流27IpXxR0IpXxR028上面的矢量积分可化为标量积分●●上面的矢量积分可化为标量积分●●29●●●●30引入线圈的磁矩:讨论:(1)圆心处,x=0,
(2)如果线圈有N匝,则磁矩:重要的结论!推广:一段圆弧电流圆心处的磁感应强度引入线圈的磁矩:讨论:(2)如果线圈有N匝,则磁矩:31载流直螺线管单位长匝数n.取圆环形电流元,dI=nIdl:II纵剖面如图,知I、n、R、L、1、
2,.dll...............L12P圆电流电流元磁场方向沿轴线三载流直螺线管内部的磁场载流直螺线管单位长匝数n.取圆环形电流元,dI=nIdl:I32.dll...............PL12换用角量:l=Rctg,dl=-Rcsc2
d,R2+l2=R2csc2
螺线管无限长时,轴线上的磁场:.dll.............33例3宽度为2b的无限长薄铜片,通有强度为I的稳恒电流。求铜片中心线正上方P点的磁感应强度解:I2b每个长条所载电流为o此长条在P点产生的磁感应强度为方向如图:在垂直薄铜片的平面内方向如图:整个薄铜片在P点产生磁场的磁感应强度建立如图坐标系只有x,y方向上的分量例3宽度为2b的无限长薄铜片,解:I2b每个长条所载电流为34只有x,y方向上的分量由于铜片对y
轴对称,所有长条电流的分量的代数和等于零I2bo只有x,y方向上的分量由于铜片对y轴对称,所有长条电流的I35I2boI2bo36-----一种重要的情形等效电流+-R例
如果均匀带电薄圆盘旋转(σ,),求圆心处的B
?R圆心处:等效于一个圆电流产生的磁场!解rdr四关于运动电流产生的磁场-----一种重要的情形等效电流+-R例如果均匀带电薄圆37简化的电流模型
I=qnvS在电流元Idl中的运动电荷数dN=nSdl可得每个带电粒子的磁场P.带电粒子不仅产生磁场,也产生电场.++q-q五运动电荷产生的磁场P×qnvISdl简化的电流模型I=qnvS在电流元Idl中的运动38等于穿过以闭合环路为边界的所围曲面的所有电流的代数和乘以1.定理表述在真空中的稳恒磁场中,磁感强度沿任一闭合环路的线积分一.安培环路定理公式表示
5.3
安培环路定理及其应用等于穿过以闭合环路为边界的所围曲面的1.定理表述在真空中的稳39讨论等式右边只是闭合回路所围电流,闭合回路外的电流对的环流无贡献.1)等式左边是空间所有电流产生的合磁感应强度正负:选定闭合回路绕行方向,如果所包围电流的正方向与闭合回路的绕行方向构成右手螺旋,则电流为正,反之为负3)说明稳恒磁场不是保守场2)是代数和,有正负讨论等式右边只是闭合回路所围电流,闭合40如图所示,一不规则的安培回路中,穿过一根通电导线,导体与安培回路所围成的横截面成
角。问:设回路方向为逆时针,则是A.B.C.D.E.F.
qI#1a0601009bA如图所示,一不规则的安培回路中,穿过一根通电A.qI#1a041如下图所示,一个八字形不规则安培回路中,穿过两根通电导线,电流为i1,i2,分别与回路平面成和角。问:A.B.C.D.E.F.I1q1I2q2q1I2q2#1a0601009cF如下图所示,一个八字形不规则安培回路中,穿过A.I1q1I242两根长直导线通有电流I,对环路L有说明:A.回路上各点的磁场为0B.回路上各点的磁场一定不为0C.D.L#1a0601010aC两根长直导线通有电流I,对环路L有A.43[D]例:如图,流出纸面的电流为2I,
流进纸面的电流为I,
则下述各式中那一个是正确的?(B)(A)(C)(D)[D]例:如图,流出纸面的电流为2I,(B)(A44二.安培环路定理在解场方面的应用对于某些电流分布具有对称性的问题,可以通过取合适的环路L利用磁场的环路定理比较方便地求解场量。(具体实施,类似于电场强度的高斯定理的解题。)电流对称性磁场对称性选取合适回路安培环路定理求磁感应强度二.安培环路定理在解场方面的应用对于某些电流分布具有对称性451无限长圆柱面电流的磁场半径为R的无限长导体圆柱面,沿轴向通以均匀的面电流,电流强度为I。求电流所产生磁场的磁感应强度分布解:在垂直圆柱面轴线的平面内,以轴线上点为圆心做一圆周,在圆周上任取两点P、Q,●●圆柱面上电流分布对点P、Q是相同的所以两点的磁感应强度的大小相等圆柱面上电流分布具有轴对称性1无限长圆柱面电流的磁场半径为R的无限46考察点P的磁感应强度的方向●当取得很小时,窄条可视为长直电流它在P点产生的磁感应强度为看下图○●●●由图不难看出合磁感应强度的方向沿圆周的切线,并与电流方向构成右手螺旋圆柱面上电流分布具有轴对称性考察点P的磁感应强度的方向●当取得很小时,47根据安培环路定理●根据安培环路定理●482长直圆柱形载流导线内外的磁场电流I均匀分布在圆柱的横截面内已知:I、R,磁场的对称分布特点.取r<R在垂直于轴线平面内作圆形回路L1
,IRrL1rL1
L2r
L2r取r>R在垂直于轴线平面内作圆形回路L2
,磁场的磁感应强度分布如图:Br0R2长直圆柱形载流导线内外的磁场电流I均匀分布在圆柱的横截面49载流直螺线管单位长匝数n.纵剖面如图,已知I、n、分析磁场的分布特点,取矩形回路abcd:...............IB=0labcd比较前面积分计算轴线磁场结果.3载流长直螺线管内部的磁场载流直螺线管单位长匝数n.纵剖面如图,已知I、n、分析磁场的50螺绕环如图,知I、N、R1、R2
.分析磁场的分布特点,取同心圆形回路L,半径
R1
<r<R2
如果螺绕环截面积很小,则:R1R2r与螺线管的磁感应强度表达式相同.4载流螺绕环内的磁场螺绕环如图,知I、N、R1、R2.分析磁场的分布特点,取51解:5无限大载流平面两侧的磁场分布已知电流线密度做一平行载流平面的平面在平面上任取两点P、Q,考察平面上任意点P的磁感应强度的方向电流分布具有面对称性●●载流平面上电流分布对点P、Q是相同的所以两点的磁感应强度的大小相等解:5无限大载流平面两侧的磁场分布已知电流线密度做一52过P点做载流平面的垂线,垂足为O当取得很小时,窄条可视为长直电流它在P点产生的磁感应强度为电流分布具有面对称性●在平面上任取一平行电流方向,宽为的窄条在载流平面上关于OP
对称的位置处,总能找到与大小相同的窄条过P点做载流平面的垂线,当取得很小时,它53看下图●●●●●●●●●●●●●●●在平面上关于OP
对称的位置处,总能找到与大小相同的窄条在P点产生的磁感应强度为由图不难看出合磁感应强度的方向平行载流平面,并与电流方向构成右手螺旋看下图●●●●●●●●●●●●●●●在平面上关于OP对称54选取一矩形闭合回路abcd,矩形回路所在平面垂直载流平面平行载流平面的平面上任意点的磁感应强度的大小都相等,其方向平行载流平面,并与电流方向构成右手螺旋ab,cd垂直载流平面bc,ad平行垂直载流平面选取回路的绕行方向如图abcd●●●●●●●●●●●●●●选取一矩形闭合回路abcd,平行载流平面的平面上任意点的磁感55选取回路的绕行方向如图●●●●●●●●●●●●●abcd段段选取回路的绕行方向如图●●●●●●●●●●●●●abcd段段56●●●●●●●●●●●●●abcd根据安培环路定理已知电流线密度无限大载流平面两侧的磁场为匀强磁场方向●●●●●●●●●●●●●abcd根据安培环路定理已知电流线57如图所示,两无限大均匀载流平面,在垂直于电流流向的方向上,单位长度的电流为i。试写出I、II、III三个区域内的磁感应强度B的表达式,并指出其方向。
IIiiI
IIIA.B.C.D.#1a0601013aC如图所示,两无限大均匀载流平面,IIiiIIIIA.#58
IIiiI
IIIA.B.C.D.如图所示,两无限大均匀载流平面,在垂直于电流流向的方向上,单位长度的电流为i。试写出I、II、III三个区域内的磁感应强度B的表达式,并指出其方向。
#1a0601013bBIIiiIIIIA.如图所示,两无限大均匀载流平面,#59稳恒磁场与静电场之比较稳恒磁场静电场场源场量实验定律通量性质环量性质场的特点电流(运动电荷)电荷无源有旋场有源无旋场稳恒磁场与静电场之比较稳恒磁场静电场场源场量60(1)粒子平行于磁场运动+qq-q+q-RR(2)粒子垂直于均匀磁场运动F=0,匀速直线运动.+qq-圆周轨道半径:运动一周的时间:四带电粒子在磁场中的运动(1)粒子平行于磁场运动+qq-q+q-RR(2)粒子垂直于61(3)粒子以一定角度进入均匀磁场+qh将速度分解为:v//=vsin,v=vcos(4)粒子以一定角度进入非均匀磁场磁约束周期与速度无关!(3)粒子以一定角度进入均匀磁场+qh将速度分解为:v62磁聚焦在均匀磁场中引入一发散角不太大的带电粒子束主要原理:带电粒子在均匀磁场的运动周期:与粒子的速度无关,经过一个回旋周期后,这些粒子会重新汇聚到另一点。磁聚焦
A
A'带电粒子在电场和磁场中运动受力:若无其它外力则有:于是原则上可解出粒子的运动情况.磁聚焦在均匀磁场中引入一发散角不太大的带电粒子束主要原理:带63导体板两侧M、N之间沿y方向有电势差金属导体板厚度为d1879年美国物理学家霍耳发现:——霍耳效应金属导体MN五霍尔效应
霍耳系数理论上如何解释?导体板两侧M、N之间沿y方向有电势差金属导体板厚度为64设导体载流子带电量为,载流子数密度为载流子平均漂移速度为霍尔电场:MN++++++---------若板的侧向宽度为b,霍尔电压b大小有:设导体载流子带电量为,载流子平均漂移速度为霍尔电65比较霍尔系数应用实验上测出霍尔系数,可以测出导体的载流子的密度,这在半导体中是很重要的根据霍尔电压的正负,确定半导体的导电机制根据霍尔电压公式,测量磁场的磁感应强度比较霍尔系数应用实验上测出霍尔系数,根据霍尔电压的正66锗常用于制作霍尔元件。如图,在一块锗板两端施加电压,锗板内电子的运动形成电流,然后将锗板置于一磁场内,磁场方向由你确定,问:若想使锗板面向你的一面带正电,背对你的一面带负电,你该如何确定磁场方向?由纸面向里由纸面向外在纸面上又左向右在纸面上由右向左在纸面上由下向上在纸面上由上向下#1a0601015a锗常用于制作霍尔元件。如图,在一块锗板两端施加电压,锗板内电67如图所示,如图所示,一块长方形半导体样品的厚度、宽度和长度分别为a,b,c,沿x轴的正向流有电流I,在z轴方向加有均匀磁场B。这时实验半导体片两侧的电势差UAA´
>0,这半导体是A.正电荷导电(P型)B.负电荷导电(N型)C.以上都不对IAczybaBx#1a0601015b如图所示,如图所示,一块长方形半导体样品的厚度、宽度和长68
霍尔效应在当今科学技术的许多领域都有着广泛的应用,如测量技术、电子技术、自动化技术等。近年来,由于新型半导体材料和低维物理学的发展使得人们对霍尔效应的研究取得了许多突破性进展。德国物理学家克利青
(K.V.Klitzing)因发现量子霍尔效应而荣获1985年度诺贝尔物理学奖;美籍华裔物理学家崔琦、美籍德裔物理学家施特默(H.L.Stormer)和美国物理学家劳克林
(R.B.Laughlin)因在发现分数量子霍尔效应方面所作出的杰出贡献而荣获1998年度诺贝尔物理学奖。这一领域因两次授予诺贝尔奖而引起了人们广泛的兴趣,崔琦也成为第六位获得诺贝尔奖的华裔科学家。霍尔效应在当今科学技术的许多领域都有着广泛的应69量子霍尔效应按经典霍尔效应理论,霍尔电阻RH(RH=U/I=K·B/d=B/nqd)应随B连续变化并随着n(载流子浓度)的增大而减小,但是,1980年,克利青在1.5K极低温度和18.9T强磁场下,测量金属——氧化物——半导体场效应晶体管时,发现其霍尔电阻RH随磁场的变化出现了一系列量子化平台,即RH=h/Ne*(e*表示e的平方,h为普朗克常数,e为电子电量,N=1,2⋯整数),这种现象称为整数量子霍尔效应(IQHE)。1982年,崔琦和施特默等人在比整数量子霍尔效应更低的温度0.1K和更强的磁场20T条件下,对具有高迁移率的更纯净的二维电子气系统样品的测量中,也在一些电阻和温度范围内观测到横向霍尔电阻呈现平台的现象,但极为不同的是,这些平台对应的不是原来量子霍尔效应的整数值而是分数值,即RH=h/ve*(v=1/3,2/3,4/3,5/3,1/5),故称为分数量子霍尔效应(FQHE)。一年后,劳克林用一个波函数对分数量子霍尔效应给出了很好的解释量子霍尔效应70霍尔效应的应用一般而言,金属和电解质的霍尔系数很小,霍尔效应不显著;半导体的霍尔系数则大得多,霍尔效应显著。从20世纪60年代起,随着半导体材料和半导体工艺的飞速展,人们发现用半导体材料制成的霍尔元件具有对磁场敏感、结构简单而牢靠、成本低廉、体积小、频率响应宽、输出电压变化大和使用寿命长等优点,因此,将其广泛应用于电磁测量、非电量测量、自动控制、计算与通讯装置中。主要表现在以下几个方面:(1)测量磁场;(2)测量半导体特性;(3)磁流体发电;(4)电磁无损探伤;(5)霍尔传感器;
便携式霍尔效应测量仪霍尔效应的应用一般而言,金属和电解质的霍尔系数很小,霍尔效应71应用一测量磁场利用霍尔效应可以制造精确测量磁感应强度的仪器——高斯计。高斯计的探头是一个霍尔元件,在它的里面是一个半导体薄片。依据(1)式,U可用毫伏计测量,K、I也可用相应的仪器测量,因此,就可以方便地算出B值。高斯计的表盘是以磁感应强度标记的,只要把高斯计插入待测磁场中,B便可以直接读出.非常方便。如果要求被测磁场精度较高,如优于±0.5%,那么,通常选用砷化镓霍尔元件,其灵敏度高,约为5-10mt/100mt.mA,温度误差可以忽略不计;如果要求被测磁场精度较低,体积要求不高,如精度低于±0.5%时,则可选用硅和锗霍尔元件。应用一测量磁场利用霍尔效应可以制造精确测量72应用二测量半导体特性霍尔效应对于诸多半导体材料和高温超导体的性质测量来说意义重大。设导体中电流方向如图1所示,如果载流子带负电,它的运动方向和电流方向相反,作用在它上面的洛伦兹力向下,因此,导体上界面带正电,下界面带负电;如果载流子带正电,则导体上界面带负电而下界面带正电。由此可以看出,只要测得上下界面间霍尔电压的符号就可以确定载流子的符号。用这种方法就能够测定半导体究竟是P型还是N型。如果载流子已知,则通过测定霍尔系数K,还可算出导体中载流子的浓度n,进而得出载流子浓度受其客观因素影响的情况。如由LakeShore公司推出的LakeShore7500系统,配备专门为7500设计的IDEAS软件,操作简单、精确,可用于测量样品的电阻、电阻率、霍尔系数、霍尔迁移率、载波密度和电子特性,能够满足人们多方面的测量需要。应用二测量半导体特性霍尔效应对于诸多半导体材料和高温超73应用三磁流体发电从20世纪50年代末开始进行研究的磁流体发电技术,可能是今后取代火力发电的一个方向。其基本原理就是利用等离子体的霍尔效应,即在横向磁场作用下使通过磁场的等离子体正、负带电粒子分离后积聚于两个极板形成电源电动势。这种新型的高效发电方式,通过燃料燃烧发出的热能使气体变成等离子体流而转换成电能,无须像火力发电一样,先将燃料燃烧释放的热能转换成机械能以推动发电机轮转动,再把机械能转换成电能,这样在提高了热能利用效率的同时,也满足了环保的要求。目前,这方面已经有示范工程,预计在2010内可局部商业化,发展前景广阔。应用三磁流体发电从20世纪50年代末开始进行研究的磁流体74应用四电磁无损探伤霍尔效应无损探伤方法安全、可靠、实用,并能实现无速度影响检测,因此,被应用在设备故障诊断、材料缺陷检测之中。其探伤原理是建立在铁磁性材料的高磁导率特性之上。采用霍尔元件检测该泄漏磁场B的信号变化,可以有效地检测出缺陷存在。钢丝绳作为起重、运输、提升及承载设备中的重要构件,被应用于矿山、运输、建筑、旅游等行业,但由于使用环境恶劣,在它表面会产生断丝、磨损等各种缺陷,所以,及时对钢丝绳探伤检测显得尤为重要。目前,国内外公认的最可靠、最实用的方法就是漏磁检测方法,根据这一检测方法设计的断丝探伤检测装置,如EMTC系列钢丝绳无损检测仪,其金属截面积测量精度为±0.2%,一个捻距内断丝有一根误判时准确率>90%,性能良好,在生产中有着广泛的用途。应用四电磁无损探伤霍尔效应无损探伤方法安全、可靠、实用,并75应用五霍尔传感器以霍尔效应原理构成的霍尔元件、霍尔集成电路、霍尔组件通称为霍尔效应磁敏传感器,简称霍尔传感器。利用霍尔电压与外加磁场成正比的线形关系可做成多种电学和非电学测量的线性传感器。如控制一定电流时,可以测量交、直流磁感应强度和磁场强度;控制电流电压的比例关系,令输出的霍尔电压与电压乘电流成比例,可制成功率测量传感器;当固定磁场强度大小及方向时,可以用来测量交直电流传感器流电流和电压。利用这一原理还可以进一步测量力、位移、压差、角度、振动、转速、加速度等各种非电学量。霍尔传感器齿轮传感器在日常生活和工业生产中应用广泛。应用五霍尔传感器以霍尔效应原理构成的霍尔元件、霍尔集成电76霍尔效应是一种发现、研究和应用都很早的磁电效应,从经典霍尔效应到整数量子霍尔效应再到分数量子霍尔效应,已经取得了不少科研成果。最近几年里,人们的兴趣主要集中在量子霍尔器件上,而电子在量子霍尔磁场中的自旋已成为研究领域的课题。分数量子霍尔效应开创了一个新的研究多体现象的新时代,新的物理效应有可能开拓出新的学科领域,这将进一步影响到物理学的很多分支。相信在不久的将来,在这个领域将不断出现科学研究的新成果,更多地为人类福。霍尔效应是一种发现、研究和应用都很早的磁电效77五载流导线在磁场受的力
安培力导线单位体积内有n个载流子——载流子个数——安培力一载流导线的受力任意有限长载流导线所受安培力安培力的方向:垂直和决定的平面,构成右手螺旋系五载流导线在磁场受的力安培力导线单位体积内有n个78例1:x0y解:由对称性分析
你能得到什么结论?方向:+y例1:x0y解:由对称性分析79在导线上任取一电流元求与匀强磁场共面的半圆形载流导线所受安培力推广任意形状的载流导线I例2.载流导线在垂直磁场方向上的投影线段在导线上任取一电流元求与匀强磁场共面的半圆形载流导线所受安培80aBIoabcA.B.C.D.无法计算E.以上都不对如图所示,在真空中有一半径为a的3/4圆弧形的导线,其中通以稳定电流I,导线置于均匀外磁场中,且与导线所在平面垂直.则该载流导线所受的磁力大小为:#1a0602017bCaBIoabcA.如图所示,81例3.如图,有一矩形线圈abcd通有电流I2
,置于一无限长直载流导线形成的磁场中,线圈与导线共面,一边与导线平行。求线圈所受磁力解:先计算ab边所受磁力abdc线元所在处的磁感应强度为方向由安培定律方向所以整个ab边受到的磁力大小为方向同理cd边所受磁力为:方向例3.如图,有一矩形线圈abcd通有电流I2,置于一82计算ad边所受力在ad边上取一线元
线元所受磁力方向大小线元所在处:整个ad边受到的磁力大小为:abdc方向方向方向同理可得bc边所受磁力方向向右计算ad边所受力在ad边上取一线元线元所受磁力方向大83RXro例:解:首先进行对称性分析处的方向:+xRXro例:解:首先进行对称性分析处的方向:+x84ABCDl1l2二载流线圈的受力——磁矩对线圈产生一力矩为线圈的面积ABCDl1l2二载流线圈的受力——磁矩对线圈产生一力矩85选取线圈平面的法线方向与电流方向构成右手螺旋与磁场方向夹角为l1l2ABCD载流线圈在磁场中都要受到的力矩——磁力矩除了与外磁场有关外,还与线圈面积和电流有关选取线圈平面的法线方向与磁场方向夹角为l1l2ABCD载流线86引入一个描述载流线圈性质的物理量——磁矩定义:不仅对矩形线圈成立,对任意形状的平面线圈都成立;对带电粒子沿闭合回路运动也成立,注意:S方向沿线圈平面的法向,并与电流方向构成右手螺旋任意形状的平面载流线圈在匀强磁场中所受力矩,所以引入一个描述载流线圈性质的物理量——磁矩定义:不仅对矩形线圈87讨论平面载流线圈在匀强磁场中任意位置所受合力均为零,仅受力矩作用因此在均匀磁场中的平面线圈只发生转动,不会发生平动非匀强磁场?ABCD平面载流线圈在磁场所受力矩,总是使线圈磁矩转向与外磁场方向一致的方向S如果线圈有N匝讨论平面载流线圈在匀强磁场中任意位置所受合力均为零,仅受力88例4.有一半圆形线圈,通有电流I,半径为R,放在均匀磁场B中,磁场与导线平面平行,求磁场作用在半圆形线圈的磁力矩解:方向竖直向上例4.有一半圆形线圈,通有电流I,半径为R,解:方向竖直向上89一无限长载流直导线,通有电流I1,在垂直导线的平面内,有一扇形导线线圈,顶点在直导线上,半径为R,通有电流I2,求扇形导线线圈所受磁力矩。例5●●×解:方向方向力偶产生力矩一无限长载流直导线,通有电流I1,在垂直导线的平面内,有一90F=BIl初始位置磁通量:A=Fs=BIlAA'0=BlAD在导线移动中,磁力作的功A=I(t
-0
)=I载流导线在均匀磁场中运动时磁力所作的功lCDAB
I载流导线AB在均匀磁场所受的磁力:FA'B'导线AB在磁力作用下移动到A'B':t=BlDA'终了位置磁通量:=BlAA'补充:
磁力的功F=BIl初始位置磁通量:A=Fs=BIlAA'0=91dA=-Md=-BISsin·d=载流线圈在磁场中转动时磁力所作的功载流线圈在磁场中转动时磁力所作的功×·M=BISsin载流线圈在磁场中受到的磁力矩:设载流线圈在磁力矩作用下偏转一个微小的角度d
:=BISd(cos)
=Id
(BScos)A=I
d=IdA=-Md=-BISsin·d=载流线圈92第五章恒定电流的磁场主要内容一磁感应强度二毕-沙定律及其应用三恒定电流磁场的安培环路理四带电粒子在磁场中的运动五霍尔效应六磁场对载流导体的作用第五章恒定电流的磁场主要内容一磁感应强度93教学要求:熟练运用洛伦兹力公式计算运动电荷在均匀磁场中的受力(大小,方向及相关的运动)
理解霍尔电压表达式及其内涵,会判断载流子的正负。熟练运用安培力公式计算直线电流、圆形电流、圆弧电流在均匀、非均匀磁场中的受力。
会计算载流线圈或旋转带电体的磁矩及其在均匀磁场中所受的力矩。教学要求:熟练运用洛伦兹力公式计算运动电荷在均匀磁场中941819年奥斯特磁铁电流运动电荷相互作用力叫磁力电流的磁效应磁现象是怎么产生的呢?实验和近代理论表明:一切磁现象起源于电荷的运动,运动的电荷在空间激发磁场,磁场对运动电荷有磁场力的作用
————磁现象的电本质一磁力与电荷的运动安培假说5.1磁现象和电磁感应强度1819年奥斯特磁铁电流运动电荷相互作用力叫磁力电流的磁95圆形电流的磁力线直线电流的磁力线I螺绕环的磁力线螺线管的磁力线圆形电流的磁力线直线电流的磁力线I螺绕环的磁力线螺线管的磁力96蹄形磁铁的磁力线条形磁铁的磁力线NS条形与蹄形磁铁同级相对条形与蹄形磁铁异级相对蹄形磁铁的磁力线条形磁铁的磁力线NS条形与蹄形磁铁同级相对条97磁场是一种类似电场的物质形态磁场的基本特征:对于处于磁场中的运动电荷有磁场力的作用研究对象:稳恒电流产生的磁场——稳恒磁场(静磁场)学习方法:与静电场——对比磁场是一种类似电场的物质形态磁场的基本特征:对于处于磁场中的98静电场静磁场产生描述图示基本定律基本性质方程电力线磁力线静止电荷q(dq)运动电荷I(Idl)毕——萨定律库仑定律叠加原理:静电场静磁场产生描述图示基本定律基本性质方程电力线磁力线静止99(2)磁作用力F还与粒子的运动方向有关,在一定的方向时F最大为Fm。用磁感应强度描述磁场各点的磁特性.(1)在磁场中某点运动的电荷,所受磁作用力,与电荷量q,速度的大小v成正比。B的单位:特斯拉(T)二磁场与磁感应强度运动电荷磁场运动电荷1磁力(洛伦兹力)大小:
B=F/qvsin方向:+q
-q(2)磁作用力F还与粒子的运动方向有关,在一定的方向时F最100三磁力线磁通量磁场的高斯定理1.磁力线
的图示——磁力线通过垂直于磁感应强度单位面积上的磁力线条数等于该处磁感应强度的大小●规定:磁感应强度的方向2磁感应强度的叠加原理三磁力线磁通量磁场的高斯定理1.磁力线的图示101磁感应线,INS线磁力线的性质无头无尾闭合曲线与电流套连,与电流形成闭合曲线与电流成右手螺旋关系磁感应线,INS线磁力线的性质无头无尾闭合曲线与电流套连,102二.磁通量设磁场某一点磁感应强度为意义:穿过面元的磁力线条数单位:韦伯(Wb)---磁场的高斯定理无源场二.磁通量设磁场某一点磁感应强度为意义:穿过面元103如图所示,一根通电导线中电流方向向右,问导线外一点P处磁场方向?ABFEDCIP×#1a0601001aF如图所示,一根通电导线中电流方向向右,问导线ABFEDCIP104一通电线圈,电流方向如图所示,问:线圈内部磁场方向?ABFEDC#1a0601001bC一通电线圈,电流方向如图所示,问:线圈内部磁场方向?ABFE105如图所示,两根通电导体平行放置,电流大小相等方向相反,问:两导体正中P点处的磁场方向:A.
纸面向内B.
纸面向外C.
向左D.
向右E.
无磁场P#1a0601002aA如图所示,两根通电导体平行放置,电流大小相等方向相反,问:两106如图:有一半圆环形回路,通以电流I,问:圆心P点处磁场方向:A.
纸面向内B.
纸面向外C.
向左D.
向右E.
无磁场P#1a0601002bB如图:有一半圆环形回路,通以电流I,问:圆心P点处磁场方向:107如图,有三个闭合回路,通以相同电流I,比较O点处三个回路在O点磁场强度大小:rRrRrR回路a回路b回路cA.
a>b>cB.
a>c>bC.
b>c>aD.
b>a>cE.
c>b>aF.
c>a>b#1a0601002cE如图,有三个闭合回路,通以相同电流I,比较O点处三个回路在O108
如图四根长直导线相距均为R,通有电流均为I,则与它们等距离的O点的磁场:A.0B.,方向水平向左C.,方向水平向右D.,方向竖直向上E.,方向竖直向下F.,方向竖直向上#1a0601003aA如图四根长直导线相距均为R,通有电流均为I,则与它们等距109A.0B.,方向水平向左C.,方向水平向右D.,方向竖直向上E.,方向竖直向下F.,方向竖直向上
如图四根长直导线相距均为R,通有电流均为I,则与它们等距离的O点磁场:#1a0601003bBA.0如图四根长直导线相距均为R,通有电流均为I,则与110A.0B.,方向水平向左C.,方向水平向右D.,方向竖直向上E.,方向竖直向下F.,方向竖直向上如图四根长直导线相距均为a,通有电流均为I,则与它们等距离的O点磁场:#1a0601003cEA.0如图四根长直导线相距均为a,通有电流均为I,则111Pd*如图所示,问该通有电流的组合体在P点的磁场是:A.,方向垂直向里B.,方向垂直向外C.,方向垂直向里D.,方向垂直向外E.
0#1a0601004aPd*如图所示,问该通有电流的组合体在P点的磁场是:A.112例1.一无限长直导线通有电流I,一长h
宽为
b的矩形面积距导线距离为
a,求通过矩形面积的磁通量。解:
I
h
b
a由磁通量的定义其法线方向垂直向外方向如图示例1.一无限长直导线通有电流I,解:Ihba由磁113通过如图所示的半球壳的磁通量
A.B.C.D.0R#1a0601012aB通过如图所示的半球壳的磁通量A.R#1a0601012114●
方向方向总垂直于和构成平面且构成右手螺旋系,
5.2
毕奥—萨伐尔定律大小写成等式(SI)为真空中的磁导率T•m/A毕——萨定律●方向方向总垂直于和115毕——萨定律的应用例1.载流长直导线的的磁场。设有长为L的载流导线,其中电流为I。计算离直导线距离为d的P点的磁感应强度。解:●大小方向垂直向里毕——萨定律的应用例1.载流长直导线的的磁场。设有长为L的116●●117方向:垂直向里讨论:无限长载流导线●思考:半无限长载流直导线磁场如何?方向:垂直向里讨论:无限长载流导线●思考:半无限长载流直导线118设有一半径为R的圆形线圈,通以电流I任取以电流元是电流元指向场点的矢径解:●●二载流圆线圈轴线上的磁场大小方向垂直和决定的平面设有一半径为R的圆形线圈,通以电流I任取以电流元是电流119IpXxR0IpXxR0120上面的矢量积分可化为标量积分●●上面的矢量积分可化为标量积分●●121●●●●122引入线圈的磁矩:讨论:(1)圆心处,x=0,
(2)如果线圈有N匝,则磁矩:重要的结论!推广:一段圆弧电流圆心处的磁感应强度引入线圈的磁矩:讨论:(2)如果线圈有N匝,则磁矩:123载流直螺线管单位长匝数n.取圆环形电流元,dI=nIdl:II纵剖面如图,知I、n、R、L、1、
2,.dll...............L12P圆电流电流元磁场方向沿轴线三载流直螺线管内部的磁场载流直螺线管单位长匝数n.取圆环形电流元,dI=nIdl:I124.dll...............PL12换用角量:l=Rctg,dl=-Rcsc2
d,R2+l2=R2csc2
螺线管无限长时,轴线上的磁场:.dll.............125例3宽度为2b的无限长薄铜片,通有强度为I的稳恒电流。求铜片中心线正上方P点的磁感应强度解:I2b每个长条所载电流为o此长条在P点产生的磁感应强度为方向如图:在垂直薄铜片的平面内方向如图:整个薄铜片在P点产生磁场的磁感应强度建立如图坐标系只有x,y方向上的分量例3宽度为2b的无限长薄铜片,解:I2b每个长条所载电流为126只有x,y方向上的分量由于铜片对y
轴对称,所有长条电流的分量的代数和等于零I2bo只有x,y方向上的分量由于铜片对y轴对称,所有长条电流的I127I2boI2bo128-----一种重要的情形等效电流+-R例
如果均匀带电薄圆盘旋转(σ,),求圆心处的B
?R圆心处:等效于一个圆电流产生的磁场!解rdr四关于运动电流产生的磁场-----一种重要的情形等效电流+-R例如果均匀带电薄圆129简化的电流模型
I=qnvS在电流元Idl中的运动电荷数dN=nSdl可得每个带电粒子的磁场P.带电粒子不仅产生磁场,也产生电场.++q-q五运动电荷产生的磁场P×qnvISdl简化的电流模型I=qnvS在电流元Idl中的运动130等于穿过以闭合环路为边界的所围曲面的所有电流的代数和乘以1.定理表述在真空中的稳恒磁场中,磁感强度沿任一闭合环路的线积分一.安培环路定理公式表示
5.3
安培环路定理及其应用等于穿过以闭合环路为边界的所围曲面的1.定理表述在真空中的稳131讨论等式右边只是闭合回路所围电流,闭合回路外的电流对的环流无贡献.1)等式左边是空间所有电流产生的合磁感应强度正负:选定闭合回路绕行方向,如果所包围电流的正方向与闭合回路的绕行方向构成右手螺旋,则电流为正,反之为负3)说明稳恒磁场不是保守场2)是代数和,有正负讨论等式右边只是闭合回路所围电流,闭合132如图所示,一不规则的安培回路中,穿过一根通电导线,导体与安培回路所围成的横截面成
角。问:设回路方向为逆时针,则是A.B.C.D.E.F.
qI#1a0601009bA如图所示,一不规则的安培回路中,穿过一根通电A.qI#1a0133如下图所示,一个八字形不规则安培回路中,穿过两根通电导线,电流为i1,i2,分别与回路平面成和角。问:A.B.C.D.E.F.I1q1I2q2q1I2q2#1a0601009cF如下图所示,一个八字形不规则安培回路中,穿过A.I1q1I2134两根长直导线通有电流I,对环路L有说明:A.回路上各点的磁场为0B.回路上各点的磁场一定不为0C.D.L#1a0601010aC两根长直导线通有电流I,对环路L有A.135[D]例:如图,流出纸面的电流为2I,
流进纸面的电流为I,
则下述各式中那一个是正确的?(B)(A)(C)(D)[D]例:如图,流出纸面的电流为2I,(B)(A136二.安培环路定理在解场方面的应用对于某些电流分布具有对称性的问题,可以通过取合适的环路L利用磁场的环路定理比较方便地求解场量。(具体实施,类似于电场强度的高斯定理的解题。)电流对称性磁场对称性选取合适回路安培环路定理求磁感应强度二.安培环路定理在解场方面的应用对于某些电流分布具有对称性1371无限长圆柱面电流的磁场半径为R的无限长导体圆柱面,沿轴向通以均匀的面电流,电流强度为I。求电流所产生磁场的磁感应强度分布解:在垂直圆柱面轴线的平面内,以轴线上点为圆心做一圆周,在圆周上任取两点P、Q,●●圆柱面上电流分布对点P、Q是相同的所以两点的磁感应强度的大小相等圆柱面上电流分布具有轴对称性1无限长圆柱面电流的磁场半径为R的无限138考察点P的磁感应强度的方向●当取得很小时,窄条可视为长直电流它在P点产生的磁感应强度为看下图○●●●由图不难看出合磁感应强度的方向沿圆周的切线,并与电流方向构成右手螺旋圆柱面上电流分布具有轴对称性考察点P的磁感应强度的方向●当取得很小时,139根据安培环路定理●根据安培环路定理●1402长直圆柱形载流导线内外的磁场电流I均匀分布在圆柱的横截面内已知:I、R,磁场的对称分布特点.取r<R在垂直于轴线平面内作圆形回路L1
,IRrL1rL1
L2r
L2r取r>R在垂直于轴线平面内作圆形回路L2
,磁场的磁感应强度分布如图:Br0R2长直圆柱形载流导线内外的磁场电流I均匀分布在圆柱的横截面141载流直螺线管单位长匝数n.纵剖面如图,已知I、n、分析磁场的分布特点,取矩形回路abcd:...............IB=0labcd比较前面积分计算轴线磁场结果.3载流长直螺线管内部的磁场载流直螺线管单位长匝数n.纵剖面如图,已知I、n、分析磁场的142螺绕环如图,知I、N、R1、R2
.分析磁场的分布特点,取同心圆形回路L,半径
R1
<r<R2
如果螺绕环截面积很小,则:R1R2r与螺线管的磁感应强度表达式相同.4载流螺绕环内的磁场螺绕环如图,知I、N、R1、R2.分析磁场的分布特点,取143解:5无限大载流平面两侧的磁场分布已知电流线密度做一平行载流平面的平面在平面上任取两点P、Q,考察平面上任意点P的磁感应强度的方向电流分布具有面对称性●●载流平面上电流分布对点P、Q是相同的所以两点的磁感应强度的大小相等解:5无限大载流平面两侧的磁场分布已知电流线密度做一144过P点做载流平面的垂线,垂足为O当取得很小时,窄条可视为长直电流它在P点产生的磁感应强度为电流分布具有面对称性●在平面上任取一平行电流方向,宽为的窄条在载流平面上关于OP
对称的位置处,总能找到与大小相同的窄条过P点做载流平面的垂线,当取得很小时,它145看下图●●●●●●●●●●●●●●●在平面上关于OP
对称的位置处,总能找到与大小相同的窄条在P点产生的磁感应强度为由图不难看出合磁感应强度的方向平行载流平面,并与电流方向构成右手螺旋看下图●●●●●●●●●●●●●●●在平面上关于OP对称146选取一矩形闭合回路abcd,矩形回路所在平面垂直载流平面平行载流平面的平面上任意点的磁感应强度的大小都相等,其方向平行载流平面,并与电流方向构成右手螺旋ab,cd垂直载流平面bc,ad平行垂直载流平面选取回路的绕行方向如图abcd●●●●●●●●●●●●●●选取一矩形闭合回路abcd,平行载流平面的平面上任意点的磁感147选取回路的绕行方向如图●●●●●●●●●●●●●abcd段段选取回路的绕行方向如图●●●●●●●●●●●●●abcd段段148●●●●●●●●●●●●●abcd根据安培环路定理已知电流线密度无限大载流平面两侧的磁场为匀强磁场方向●●●●●●●●●●●●●abcd根据安培环路定理已知电流线149如图所示,两无限大均匀载流平面,在垂直于电流流向的方向上,单位长度的电流为i。试写出I、II、III三个区域内的磁感应强度B的表达式,并指出其方向。
IIiiI
IIIA.B.C.D.#1a0601013aC如图所示,两无限大均匀载流平面,IIiiIIIIA.#150
IIiiI
IIIA.B.C.D.如图所示,两无限大均匀载流平面,在垂直于电流流向的方向上,单位长度的电流为i。试写出I、II、III三个区域内的磁感应强度B的表达式,并指出其方向。
#1a0601013bBIIiiIIIIA.如图所示,两无限大均匀载流平面,#151稳恒磁场与静电场之比较稳恒磁场静电场场源场量实验定律通量性质环量性质场的特点电流(运动电荷)电荷无源有旋场有源无旋场稳恒磁场与静电场之比较稳恒磁场静电场场源场量152(1)粒子平行于磁场运动+qq-q+q-RR(2)粒子垂直于均匀磁场运动F=0,匀速直线运动.+qq-圆周轨道半径:运动一周的时间:四带电粒子在磁场中的运动(1)粒子平行于磁场运动+qq-q+q-RR(2)粒子垂直于153(3)粒子以一定角度进入均匀磁场+qh将速度分解为:v//=vsin,v=vcos(4)粒子以一定角度进入非均匀磁场磁约束周期与速度无关!(3)粒子以一定角度进入均匀磁场+qh将速度分解为:v154磁聚焦在均匀磁场中引入一发散角不太大的带电粒子束主要原理:带电粒子在均匀磁场的运动周期:与粒子的速度无关,经过一个回旋周期后,这些粒子会重新汇聚到另一点。磁聚焦
A
A'带电粒子在电场和磁场中运动受力:若无其它外力则有:于是原则上可解出粒子的运动情况.磁聚焦在均匀磁场中引入一发散角不太大的带电粒子束主要原理:带155导体板两侧M、N之间沿y方向有电势差金属导体板厚度为d1879年美国物理学家霍耳发现:——霍耳效应金属导体MN五霍尔效应
霍耳系数理论上如何解释?导体板两侧M、N之间沿y方向有电势差金属导体板厚度为156设导体载流子带电量为,载流子数密度为载流子平均漂移速度为霍尔电场:MN++++++---------若板的侧向宽度为b,霍尔电压b大小有:设导体载流子带电量为,载流子平均漂移速度为霍尔电157比较霍尔系数应用实验上测出霍尔系数,可以测出导体的载流子的密度,这在半导体中是很重要的根据霍尔电压的正负,确定半导体的导电机制根据霍尔电压公式,测量磁场的磁感应强度比较霍尔系数应用实验上测出霍尔系数,根据霍尔电压的正158锗常用于制作霍尔元件。如图,在一块锗板两端施加电压,锗板内电子的运动形成电流,然后将锗板置于一磁场内,磁场方向由你确定,问:若想使锗板面向你的一面带正电,背对你的一面带负电,你该如何确定磁场方向?由纸面向里由纸面向外在纸面上又左向右在纸面上由右向左在纸面上由下向上在纸面上由上向下#1a0601015a锗常用于制作霍尔元件。如图,在一块锗板两端施加电压,锗板内电159如图所示,如图所示,一块长方形半导体样品的厚度、宽度和长度分别为a,b,c,沿x轴的正向流有电流I,在z轴方向加有均匀磁场B。这时实验半导体片两侧的电势差UAA´
>0,这半导体是A.正电荷导电(P型)B.负电荷导电(N型)C.以上都不对IAczybaBx#1a0601015b如图所示,如图所示,一块长方形半导体样品的厚度、宽度和长160
霍尔效应在当今科学技术的许多领域都有着广泛的应用,如测量技术、电子技术、自动化技术等。近年来,由于新型半导体材料和低维物理学的发展使得人们对霍尔效应的研究取得了许多突破性进展。德国物理学家克利青
(K.V.Klitzing)因发现量子霍尔效应而荣获1985年度诺贝尔物理学奖;美籍华裔物理学家崔琦、美籍德裔物理学家施特默(H.L.Stormer)和美国物理学家劳克林
(R.B.Laughlin)因在发现分数量子霍尔效应方面所作出的杰出贡献而荣获1998年度诺贝尔物理学奖。这一领域因两次授予诺贝尔奖而引起了人们广泛的兴趣,崔琦也成为第六位获得诺贝尔奖的华裔科学家。霍尔效应在当今科学技术的许多领域都有着广泛的应161量子霍尔效应按经典霍尔效应理论,霍尔电阻RH(RH=U/I=K·B/d=B/nqd)应随B连续变化并随着n(载流子浓度)的增大而减小,但是,1980年,克利青在1.5K极低温度和18.9T强磁场下,测量金属——氧化物——半导体场效应晶体管时,发现其霍尔电阻RH随磁场的变化出现了一系列量子化平台,即RH=h/Ne*(e*表示e的平方,h为普朗克常数,e为电子电量,N=1,2⋯整数),这种现象称为整数量子霍尔效应(IQHE)。1982年,崔琦和施特默等人在比整数量子霍尔效应更低的温度0.1K和更强的磁场20T条件下,对具有高迁移率的更纯净的二维电子气系统样品的测量中,也在一些电阻和温度范围内观测到横向霍尔电阻呈现平台的现象,但极为不同的是,这些平台对应的不是原
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030全球非电动助残设备行业调研及趋势分析报告
- 2025-2030全球智能媒体芯片行业调研及趋势分析报告
- 课件:《教育强国建设规划纲要(2024-2035年)》学习宣讲
- 进修学习合同书
- 2025深圳市建设工程施工合同(适用于招标工程固定单价施工合同)
- 工程可行性研究报告模板
- 终端设备维护服务合同
- 2025出租车辆承包合同范本
- 钢筋绑扎劳务合同范本
- 医院装修合同
- 人教版《道德与法治》四年级下册教材简要分析课件
- 2023年MRI技术操作规范
- 办公用品、易耗品供货服务方案
- 自行联系单位实习申请表
- 医疗废物集中处置技术规范
- 媒介社会学备课
- 2023年检验检测机构质量手册(依据2023年版评审准则编制)
- 三相分离器原理及操作
- 新教科版五年级下册科学全册每节课后练习+答案(共28份)
- 葫芦岛尚楚环保科技有限公司医疗废物集中处置项目环评报告
- 全国物业管理项目经理考试试题
评论
0/150
提交评论