



下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
-双曲线的几何性质-同步练习-双曲线的几何性质-同步练习-双曲线的几何性质-同步练习-双曲线的几何性质-同步练习编制仅供参考审核批准生效日期地址:电话:传真:邮编:双曲线的几何性质同步练习A班级:姓名:成绩:一、选择题(每小题5分)1.下列各对双曲线中,既有相同的离心率,又有相同的渐近线的是()(A)―y2=1与y2―=1(B)―y2=1与(C)y2―=1与x2―(D)―y2=1与2.如果双曲线上一点P到右焦点的距离等于,那么点P到右准线的距离是() A. B.13 C.5 D.3.双曲线的渐近线方程是y=±2x,那么双曲线方程是
() A.x2-4y2=1
B.x2-4y2=1 C.4x2-y2=-1
D.4x2-y24.双曲线的渐近线为y=±x,则双曲线的离心率为()(A)(B)2(C)或(D)或5.已知双曲线的一条准线是y=1,则实数k的值是()(A)(B)―(C)1(D)―16.二次曲线,时,该曲线的离心率e的取值范围是() A. B. C. D.二、填空题(每小题5分)7.已知双曲线的离心率等于2,且过点M(2,-3),此双曲线标准方程是______.8.渐近线方程是4x,准线方程是5y的双曲线方程是.9.双曲线的离心率为,则a:b=10.双曲线的离心率e=2,则它的一个顶点把焦点之间的线段分成长、短两段的比是.三、解答题(11、12、13题每题12分,14题14分)11、已知A()为一定点,F为双曲线的右焦点,M在双曲线的右支上移动,当最小时,求M点的坐标。12.给定双曲线,过A(2,1)的直线与双曲线交于两点及,求线段的中点P的轨迹方程.13.若椭圆与双曲线有相同的焦点,又椭圆与双曲线交于,求椭圆及双曲线的方程.14.已知双曲线C以坐标轴为对称轴,顶点为A(0,),点A关于一条渐近线的对称点是B(,0),斜率为2且过点B的直线交双曲线C于M、N两点.(1)求双曲线C的方程;(2)求|MN|.双曲线的几何性质同步练习B班级:姓名:成绩:选择题(每小题5分)1.双曲线虚轴的一个端点为M,两个焦点F1、F2,∠F1MF2=120°,则双曲线的离心率为()A.B.C.D.2.双曲线=1的两条渐近线所夹的锐角是()(A)2arctan(B)2arctan(C)π-2arctan(D)π-2arctan3.设c、e分别是双曲线的半焦距和离心率,则双曲线(a>0,b>0)的一个顶点到它的一条渐近线的距离是 () A. B. C. D.4.双曲线的两焦点为F1,F2,P在双曲线上,且满足|PF1|+|PF2|=则△PF1F2的面积为 () A. B.1 C.2 D.45.已知椭圆与双曲线有相同的焦点和.若是的等比中项,是与的等差中项,则椭圆的离心率是() A. B. C. D.6.过原点作直线与双曲线相交,则直线l的斜率k的取值范围是 () A. B. C. D.二、填空题(每小题5分)7.在双曲线的一支上有不同的三点A(x1,y1),B(,6),C(x3,y3)与焦点F间的距离成等差数列,则y1+y3等于.8.过双曲线的一个焦点的直线交这条双曲线于A(x1,7-a),B(x2,3+a)两点,则=_________.9.设P是x2-y2=a2(a>0)右支上一点,F1,F2是其左、右焦点,若∠PF1F2=90°,|PF1|=6,则a的值为10.正△ABC中,D、E分别是AB、AC的中点,则以B、C为焦点,且过D、E的椭圆与双曲线的离心率之和为.三、解答题(11、12、13题每题12分,14题14分)11、过双曲线的左焦点为,作倾斜角为的弦AB,求:(1);(2)12.某工程要将直线公路l一侧的土石,通过公路上的两个道口A和B,沿着道路AP、BP运往公路另一侧的P处,PA=100m,PB=150m,∠APB=60°,试说明怎样运土石最省工13.已知双曲线的离心率,过的直线到原点的距离是(1)求双曲线的方程;(2)已知直线交双曲线于不同的点C,D且C
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025买卖钢材简易合同范本
- 2025合同违约与合同无效的差异
- 2025铝合金窗户安装合同
- 2025标准个人住宅抵押担保借款合同
- 2025网签版私人购房合同
- 2025租赁合同范本汇编
- 2025标准版土地转让合同
- 2025年国际贸易代理合同范本
- 2025年安徽省淮北市五校联考中考二模历史试题(含答案)
- 用户受电施工合同协议
- DB32-T 4569-2023 发泡陶瓷保温板保温系统应用技术规程
- 【MOOC】中学教育见习与实习-河北师范大学 中国大学慕课MOOC答案
- 2024-2025学年北京西城区北京四中高二(上)期中物理试卷(含答案)
- 北京市矢量地图-可改颜色
- 技术转移案例
- 旅游公司抖音代运营合同范本
- 青铜器科普宣传
- 高铁课件教学课件
- 《大学生创新创业基础教程》第六章创业资源与融资
- 山水林田湖草生态环境调查技术规范DB41-T 1992-2020
- 光影中国学习通超星期末考试答案章节答案2024年
评论
0/150
提交评论