2023届福建省寿宁县数学九年级第一学期期末综合测试试题含解析_第1页
2023届福建省寿宁县数学九年级第一学期期末综合测试试题含解析_第2页
2023届福建省寿宁县数学九年级第一学期期末综合测试试题含解析_第3页
2023届福建省寿宁县数学九年级第一学期期末综合测试试题含解析_第4页
2023届福建省寿宁县数学九年级第一学期期末综合测试试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.如图,在△ABC中,M,N分别为AC,BC的中点.则△CMN与△CAB的面积之比是()A.1:2 B.1:3 C.1:4 D.1:92.下列结论正确的是()A.垂直于弦的弦是直径 B.圆心角等于圆周角的2倍C.平分弦的直径垂直该弦 D.圆内接四边形的对角互补3.为了宣传垃圾分类,童威写了一篇倡议书,决定用微博转发的方式传播.他设计了如下的传播规则:将倡议书发表在自己的微博上,再邀请n个好友转发,每个好友转发之后,又邀请n个互不相同的好友转发,依次类推.已知经过两轮转发后,共有111个人参与了宣传活动,则n的值为()A.9 B.10 C.11 D.124.图①是由五个完全相同的小正方体组成的立体图形.将图①中的一个小正方体改变位置后如图②,则三视图发生改变的是()A.主视图 B.俯视图C.左视图 D.主视图、俯视图和左视图都改变5.在直角三角形ABC中,已知∠C=90°,∠A=40°,BC=3,则AC=()A.3sin40°B.3sin50°6.在Rt△ABC中,∠C=90°,AB=13,AC=5,则tanA的值为A. B. C. D.7.一元二次方程x2-2x+1=0的根的情况是()A.只有一个实数根 B.有两个相等的实数根C.有两个不相等的实数根 D.没有实数根8.下列图形中,既是中心对称图形又是轴对称图形的有几个()A.4个 B.3个 C.2个 D.1个9.已知反比例函数的图象经过点,则这个函数的图象位于()A.第二、三象限 B.第一、三象限 C.第三、四象限 D.第二、四象限10.如图,将绕点逆时针旋转,旋转角为,得到,这时点,,恰好在同一直线上,下列结论一定正确的是()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,在正方形ABCD的外侧,作等边△ABE,则∠BFC=_________°12.如图,反比例函数的图象经过点,过作轴垂线,垂足是是轴上任意一点,则的面积是_________.13.小亮在上午8时,9时30分,10时,12时四次到室外的阳光下观察向日葵的头茎随太阳转动的情况,无意之中,他发现这四个时刻向日葵影子的长度各不相同,那么影子最长的时刻为________.14.如图,点A,B,C在⊙O上,CO的延长线交AB于点D,∠A=50°,∠B=30°,则∠ADC的度数为_____.15.分解因式:x3﹣16x=______.16.已知关于x的函数满足下列条件:①当x>0时,函数值y随x值的增大而减小;②当x=1时,函数值y=1.请写一个符合条件函数的解析式:_____.(答案不唯一)17.如图,在平面直角坐标系中,将边长为1的正方形绕点逆时针旋转45°后得到正方形,继续旋转至2020次得到正方形,那点的坐标是__________.18.二次函数的顶点坐标是__________.三、解答题(共66分)19.(10分)对于平面直角坐标系中的图形M,N,给出如下定义:如果点P为图形M上任意一点,点Q为图形N上任意一点,那么称线段PQ长度的最小值为图形M,N的“近距离”,记作d(M,N).若图形M,N的“近距离”小于或等于1,则称图形M,N互为“可及图形”.(1)当⊙O的半径为2时,①如果点A(0,1),B(3,4),那么d(A,⊙O)=_______,d(B,⊙O)=________;②如果直线与⊙O互为“可及图形”,求b的取值范围;(2)⊙G的圆心G在轴上,半径为1,直线与x轴交于点C,与y轴交于点D,如果⊙G和∠CDO互为“可及图形”,直接写出圆心G的横坐标m的取值范围.20.(6分)关于x的一元二次方程(k+1)x2﹣3x﹣3k﹣2=0有一个根为﹣1,求k的值及方程的另一个根.21.(6分)如图1,在平面直角坐标系xOy中,已知△ABC,∠ABC=90°,顶点A在第一象限,B,C在x轴的正半轴上(C在B的右侧),BC=2,AB=2,△ADC与△ABC关于AC所在的直线对称.(1)当OB=2时,求点D的坐标;(2)若点A和点D在同一个反比例函数的图象上,求OB的长;(3)如图2,将第(2)题中的四边形ABCD向右平移,记平移后的四边形为A1B1C1D1,过点D1的反比例函数y=(k≠0)的图象与BA的延长线交于点P.问:在平移过程中,是否存在这样的k,使得以点P,A1,D为顶点的三角形是直角三角形?若存在,请直接写出所有符合题意的k的值;若不存在,请说明理由.22.(8分)某学校的学生为了对小雁塔有基本的认识,在老师的带领下对小雁塔进行了测量.测量方法如下:如图,间接测得小雁塔地部点D到地面上一点E的距离为115.2米,小雁塔的顶端为点B,且BD⊥DE,在点E处竖直放一个木棒,其顶端为C,CE=1.72米,在DE的延长线上找一点A,使A、C、B三点在同一直线上,测得AE=4.8米.求小雁塔的高度.23.(8分)对垃圾进行分类投放,能提高垃圾处理和再利用的效率,减少污染,保护环境,为了检查垃圾分类的落实情况,某居委会成立了甲、乙两个检查组,采取随机抽查的方式分别对辖区内的四个小区进行检查,并且每个小区不重复检查.请用列表或画树状图的方法求甲组抽到小区,同时乙组抽到小区的概率.24.(8分)如图,与关于O点中心对称,点E、F在线段AC上,且AF=CE.求证:FD=BE.25.(10分)已知关于的一元二次方程的一个根是1,求它的另一个根及m的值.26.(10分)已知y是x的反比例函数,并且当x=2时,y=6.(1)求y关于x的函数解析式;(2)当x=时,y=______.

参考答案一、选择题(每小题3分,共30分)1、C【解析】由M、N分别为AC、BC的中点可得出MN∥AB,AB=2MN,进而可得出△ABC∽△MNC,根据相似三角形的性质即可得到结论.【详解】∵M、N分别为AC、BC的中点,∴MN∥AB,且AB=2MN,∴△ABC∽△MNC,∴()2=.故选C.【点睛】本题考查了相似三角形的判定与性质以及三角形中位线定理,根据三角形中位线定理结合相似三角形的判定定理找出△ABC∽△MNC是解题的关键.2、D【分析】分别根据垂径定理、圆周角定理及圆内接四边形的性质对各选项进行逐一分析即可.【详解】解:A,垂直于弦的弦不一定是直径,故本选项错误;B,在同圆或等圆中,同弧或等弧所对的圆心角等于圆周角的2倍,故本选项错误;C,平分弦的直径垂直该弦(非直径),故本选项错误;D,符合圆内接四边形的性质故本选项正确.故选:D.【点睛】本题主要考查了垂径定理、圆周角定理以及圆内接四边形的基本性质.3、B【分析】设邀请了n个好友转发倡议书,第一轮传播了n个人,第二轮传播了n2个人,根据两轮传播共有111人参与列出方程求解即可.【详解】由题意,得n+n2+1=111,解得:n1=-11(舍去),n2=10,故选B.【点睛】本题考查了列一元二次方程解实际问题的运用,解答时先由条件表示出第一轮增加的人数和第二轮增加的人数根据两轮总人数为111人建立方程是关键.4、A【分析】根据从正面看得到的视图是主视图,从左边看得到的图形是左视图,从上边看得到的图形是俯视图对两个组合体进行判断,可得答案.【详解】解:①的主视图是第一层三个小正方形,第二层中间一个小正方形;左视图是第一层两个小正方形,第二层左边一个小正方形;俯视图是第一层中间一个小正方形,第二层三个小正方形;②的主视图是第一层三个小正方形,第二层左边一个小正方形;左视图是第一层两个小正方形,第二层左边一个小正方形;俯视图是第一层中间一个小正方形,第二层三个小正方形;所以将图①中的一个小正方体改变位置后,俯视图和左视图均没有发生改变,只有主视图发生改变,故选:A.【点睛】本题考查了三视图的知识,解决此类图的关键是由三视图得到相应的立体图形.从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图.5、D【解析】试题分析:∵∠C=90°,∠A=40°,∴∠B=50°.∵BC=3,tanB=ACBC故选D.考点:1.直角三角形两锐角的关系;2.锐角三角函数定义.6、D【分析】利用勾股定理即可求得BC的长,然后根据正切的定义即可求解.【详解】根据勾股定理可得:BC=∴tanA=.故选:D.【点睛】本题考查了勾股定理和三角函数的定义,正确理解三角函数的定义是关键.7、B【解析】△=b2-4ac=(-2)2-4×1×1=0,∴原方程有两个相等的实数根.故选B.【点睛】,本题考查根的判别式,一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2-4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.8、D【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:第一个图形是轴对称图形,不是中心对称图形;第二个图形是轴对称图形,是中心对称图形;第三个图形是轴对称图形,不是中心对称图形;第四个图形不是轴对称图形,是中心对称图形;既是中心对称图形又是轴对称图形的有1个,故选:D.【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.9、D【分析】首先将点P的坐标代入确定函数的表达式,再根据k>0时,函数图象位于第一、三象限;k<0时函数图象位于第二、四象限解答即可.【详解】解:∵反比例函数的图象经过点P(-2,1),

∴k=-2<0,

∴函数图象位于第二,四象限.故选:D.【点睛】本题考查了反比例函数图象上的点以及反比例函数图象的性质,掌握基本概念和性质是解题的关键.10、C【分析】由旋转的性质可得AB=AD,∠BAD=α,由等腰三角形的性质可求解.【详解】∵将△ABC绕点A逆时针旋转,旋转角为α,

∴AB=AD,∠BAD=α,

∴∠B=

故选:C.【点睛】本题考查了旋转的性质,等腰三角形的性质,熟练运用旋转的性质是本题的关键.二、填空题(每小题3分,共24分)11、1【解析】根据正方形的性质及等边三角形的性质求出∠ADE=15°,∠DAC=45°,再求∠DFC,证△DCF≅△BCF,可得∠BFC=∠DFC.【详解】∵四边形ABCD是正方形,

∴AB=AD=CD=BC,∠DCF=∠BCF=45°

又∵△ABE是等边三角形,

∴AE=AB=BE,∠BAE=1°

∴AD=AE

∴∠ADE=∠AED,∠DAE=90°+1°=150°

∴∠ADE=(180°-150°)÷2=15°

又∵∠DAC=45°

∴∠DFC=45°+15°=1°在△DCF和△BCF中CD=BC∠DCF=∠BCF∴△DCF≅△BCF∴∠BFC=∠DFC=1°

故答案为:1.【点睛】本题主要是考查了正方形的性质和等边三角形的性质,本题的关键是求出∠ADE=15°.12、【分析】连接OA,根据反比例函数中k的几何意义可得,再根据等底同高的三角形的面积相等即可得出结论【详解】解:连接OA,∵反比例函数的图象经过点,∴;∵过作轴垂线,垂足是;∴AB//OC∴和等底同高;∴;故答案为:【点睛】本题考查了反比例函数比例系数的几何意义、等底同高的三角形的面积,熟练掌握反比例函数的性质是解题的关键13、上午8时【解析】解:根据地理知识,北半球不同时刻太阳高度角不同影长也不同,规律是由长变短,再变长.故答案为上午8时.点睛:根据北半球不同时刻物体在太阳光下的影长是由长变短,再变长来解答此题.14、110°【解析】试题分析:∵∠A=50°,∴∠BOC=2∠A=100°,∵∠B=30°,∠BOC=∠B+∠BDC,∴∠BDC=∠BOC﹣∠B=100°﹣30°=70°,∴∠ADC=180°﹣∠BDC=110°,故答案为110°.考点:圆周角定理.15、x(x+4)(x–4).【解析】先提取x,再把x2和16=42分别写成完全平方的形式,再利用平方差公式进行因式分解即可.解:原式=x(x2﹣16)=x(x+4)(x﹣4),故答案为x(x+4)(x﹣4).16、y=(答案不唯一).【分析】根据反比例函数的性质解答.【详解】解:根据反比例函数的性质关于x的函数当x>0时,函数值y随x值的增大而减小,则函数关系式为y=(k>0),把当x=1时,函数值y=1,代入上式得k=1,符合条件函数的解析式为y=(答案不唯一).【点睛】此题主要考察反比例函数的性质,判断k与零的大小是关键.17、(-1,-1)【分析】连接OB,根据图形可知,点B在以点O为圆心、、OB为半径的圆上运用,将正方形OABC绕点O逆时针依次旋转45°,可得点B的对应点坐标,根据图形及对应点的坐标发现是8次一个循环,进而得出结论.【详解】解:如图,∵四边形OABC是正方形,且OA=1,∴B(1,1),连接OB,由勾股定理可得,由旋转的性质得:将正方形OABC绕点O逆时针依次旋转45°,得:,∴,,,,…,可发现8次一循环,∵,∴点的坐标为,故答案为.【点睛】本题考查了几何图形的规律探究,根据计算得出“8次一个循环”是解题的关键.18、(2,1)【分析】将解析式化为顶点式即可顶点答案.【详解】∵,∴二次函数的顶点坐标是(2,1),故答案为:(2,1).【点睛】此题考查二次函数的一般式化为顶点式的方法,顶点式解析式中各字母的意义,正确转化解析式的形式是解题的关键.三、解答题(共66分)19、(1)①1,3;②;(2),.【分析】(1)①根据图形M,N间的“近距离”的定义结合已知条件求解即可.②根据可及图形的定义作出符合题意的图形,结合图形作答即可;(2)分两种情况进行讨论即可.【详解】(1)①如图:根据近距离的定义可知:d(A,⊙O)=AC=2-1=1.过点B作BE⊥x轴于点E,则OB==5∴d(B,⊙O)=OB-OD=5-2=3.故答案为1,3.②∵由题意可知直线与⊙O互为“可及图形”,⊙O的半径为2,∴.∴.∴.(2)①当⊙G与边OD是可及图形时,d(O,⊙G)=OG-1,∴即-1≤m-1≤1解得:.②当⊙G与边CD是可及图形时,如图,过点G作GE⊥CD于E,d(E,⊙G)=EG-1,由近距离的定义可知d(E,⊙G)的最大值为1,∴此时EG=2,∵∠GCE=45°,∴GC=2.∵OC=5,∴OG=5-2.根据对称性,OG的最大值为5+2.∴综上所述,m的取值范围为:或【点睛】本题主要考查了圆的综合知识,正确理解“近距离”和“可及图形”的概念是解题的关键.20、k=1,x=【分析】将x=﹣1代入原方程可求出k值的值,然后根据根与系数的关系即可求出另外一根.【详解】将x=﹣1代入(k+1)x2﹣3x﹣3k﹣2=0,∴k=1,∴该方程为2x2﹣3x﹣5=0,设另外一根为x,由根与系数的关系可知:﹣x=,∴x=.【点睛】本题考查了根与系数的关系,能熟记根与系数的关系的内容是解题的关键.21、(1)点D坐标为(5,);(2)OB=2;(2)k=12.【解析】分析:(1)如图1中,作DE⊥x轴于E,解直角三角形清楚DE,CE即可解决问题;(2)设OB=a,则点A的坐标(a,2),由题意CE=1.DE=,可得D(2+a,),点A、D在同一反比例函数图象上,可得2a=(2+a),求出a的值即可;(2)分两种情形:①如图2中,当∠PA1D=90°时.②如图2中,当∠PDA1=90°时.分别构建方程解决问题即可;详解:(1)如图1中,作DE⊥x轴于E.∵∠ABC=90°,∴tan∠ACB=,∴∠ACB=60°,根据对称性可知:DC=BC=2,∠ACD=∠ACB=60°,∴∠DCE=60°,∴∠CDE=90°-60°=20°,∴CE=1,DE=,∴OE=OB+BC+CE=5,∴点D坐标为(5,).(2)设OB=a,则点A的坐标(a,2),由题意CE=1.DE=,可得D(2+a,),∵点A、D在同一反比例函数图象上,∴2a=(2+a),∴a=2,∴OB=2.(2)存在.理由如下:①如图2中,当∠PA1D=90°时.∵AD∥PA1,∴∠ADA1=180°-∠PA1D=90°,在Rt△ADA1中,∵∠DAA1=20°,AD=2,∴AA1==4,在Rt△APA1中,∵∠APA1=60°,∴PA=,∴PB=,设P(m,),则D1(m+7,),∵P、A1在同一反比例函数图象上,∴m=(m+7),解得m=2,∴P(2,),∴k=10.②如图2中,当∠PDA1=90°时.∵∠PAK=∠KDA1=90°,∠AKP=∠DKA1,∴△AKP∽△DKA1,∴.∴,∵∠AKD=∠PKA1,∴△KAD∽△KPA1,∴∠KPA1=∠KAD=20°,∠ADK=∠KA1P=20°,∴∠APD=∠ADP=20°,∴AP=AD=2,AA1=6,设P(m,4),则D1(m+9,),∵P、A1在同一反比例函数图象上,∴4m=(m+9),解得m=2,∴P(2,4),∴k=12.点睛:本题考查反比例函数综合题、相似三角形的判定和性质、锐角三角函数、解直角三角形、待定系数法等知识,解题的关键是学会用

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论