2022年山东省济宁市邹城市重点名校中考试题猜想数学试卷含解析_第1页
2022年山东省济宁市邹城市重点名校中考试题猜想数学试卷含解析_第2页
2022年山东省济宁市邹城市重点名校中考试题猜想数学试卷含解析_第3页
2022年山东省济宁市邹城市重点名校中考试题猜想数学试卷含解析_第4页
2022年山东省济宁市邹城市重点名校中考试题猜想数学试卷含解析_第5页
免费预览已结束,剩余17页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2021-2022中考数学模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(共10小题,每小题3分,共30分)1.已知:如图四边形OACB是菱形,OB在X轴的正半轴上,sin∠AOB=1213.反比例函数y=kx在第一象限图象经过点A,与BC交于点F.S△AOF=A.15 B.13 C.12 D.52.函数与在同一坐标系中的大致图象是()A、B、C、D、3.不等式组的解在数轴上表示为()A. B. C. D.4.“凤鸣”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x名同学,那么依题意,可列出的方程是()A.x(x+1)=210 B.x(x﹣1)=210C.2x(x﹣1)=210 D.x(x﹣1)=2105.正方形ABCD和正方形BPQR的面积分别为16、25,它们重叠的情形如图所示,其中R点在AD上,CD与QR相交于S点,则四边形RBCS的面积为()A.8 B. C. D.6.如图,在数轴上有点O,A,B,C对应的数分别是0,a,b,c,AO=2,OB=1,BC=2,则下列结论正确的是()A. B. C. D.7.甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是()A. B. C. D.8.的倒数的绝对值是()A. B. C. D.9.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b,若,大正方形的面积为13,则小正方形的面积为()A.3 B.4 C.5 D.610.关于x的方程x2﹣3x+k=0的一个根是2,则常数k的值为()A.1 B.2 C.﹣1 D.﹣2二、填空题(本大题共6个小题,每小题3分,共18分)11.在平面直角坐标系的第一象限内,边长为1的正方形ABCD的边均平行于坐标轴,A点的坐标为(a,a).如图,若曲线与此正方形的边有交点,则a的取值范围是________.12.如图,已知圆柱底面周长为6cm,圆柱高为2cm,在圆柱的侧面上,过点A和点C嵌有一圈金属丝,则这圈金属丝的周长最小为_____cm.13.如图,在平面直角坐标系中,抛物线y=﹣x2+4x与x轴交于点A,点M是x轴上方抛物线上一点,过点M作MP⊥x轴于点P,以MP为对角线作矩形MNPQ,连结NQ,则对角线NQ的最大值为_________.14.如图,菱形ABCD的对角线的长分别为2和5,P是对角线AC上任一点(点P不与点A、C重合),且PE∥BC交AB于E,PF∥CD交AD于F,则阴影部分的面积是__________.15.如图,直线x=2与反比例函数和的图象分别交于A、B两点,若点P是y轴上任意一点,则△PAB的面积是_____.16.如图,直线a∥b,∠P=75°,∠2=30°,则∠1=_____.三、解答题(共8题,共72分)17.(8分)为了解某市市民“绿色出行”方式的情况,某校数学兴趣小组以问卷调查的形式,随机调查了某市部分出行市民的主要出行方式(参与问卷调查的市民都只从以下五个种类中选择一类),并将调查结果绘制成如下不完整的统计图.种类ABCDE出行方式共享单车步行公交车的士私家车根据以上信息,回答下列问题:(1)参与本次问卷调查的市民共有人,其中选择B类的人数有人;(2)在扇形统计图中,求A类对应扇形圆心角α的度数,并补全条形统计图;(3)该市约有12万人出行,若将A,B,C这三类出行方式均视为“绿色出行”方式,请估计该市“绿色出行”方式的人数.18.(8分)如图1,正方形ABCD的边长为8,动点E从点D出发,在线段DC上运动,同时点F从点B出发,以相同的速度沿射线AB方向运动,当点E运动到终点C时,点F也停止运动,连接AE交对角线BD于点N,连接EF交BC于点M,连接AM.(参考数据:sin15°=,cos15°=,tan15°=2﹣)(1)在点E、F运动过程中,判断EF与BD的位置关系,并说明理由;(2)在点E、F运动过程中,①判断AE与AM的数量关系,并说明理由;②△AEM能为等边三角形吗?若能,求出DE的长度;若不能,请说明理由;(3)如图2,连接NF,在点E、F运动过程中,△ANF的面积是否变化,若不变,求出它的面积;若变化,请说明理由.19.(8分)如图,在电线杆上的C处引拉线CE、CF固定电线杆,拉线CE和地面成60°角,在离电线杆6米的B处安置测角仪,在A处测得电线杆上C处的仰角为30°,已知测角仪高AB为1.5米,求拉线CE的长(结果保留根号).20.(8分)如图,已知A是⊙O上一点,半径OC的延长线与过点A的直线交于点B,OC=BC,AC=OB.求证:AB是⊙O的切线;若∠ACD=45°,OC=2,求弦CD的长.21.(8分)(阅读)如图1,在等腰△ABC中,AB=AC,AC边上的高为h,M是底边BC上的任意一点,点M到腰AB、AC的距离分别为h1,h1.连接AM.∵∴(思考)在上述问题中,h1,h1与h的数量关系为:.(探究)如图1,当点M在BC延长线上时,h1、h1、h之间有怎样的数量关系式?并说明理由.(应用)如图3,在平面直角坐标系中有两条直线l1:,l1:y=-3x+3,若l1上的一点M到l1的距离是1,请运用上述结论求出点M的坐标.22.(10分)定义:对于给定的二次函数y=a(x﹣h)2+k(a≠0),其伴生一次函数为y=a(x﹣h)+k,例如:二次函数y=2(x+1)2﹣3的伴生一次函数为y=2(x+1)﹣3,即y=2x﹣1.(1)已知二次函数y=(x﹣1)2﹣4,则其伴生一次函数的表达式为_____;(2)试说明二次函数y=(x﹣1)2﹣4的顶点在其伴生一次函数的图象上;(3)如图,二次函数y=m(x﹣1)2﹣4m(m≠0)的伴生一次函数的图象与x轴、y轴分别交于点B、A,且两函数图象的交点的横坐标分别为1和2,在∠AOB内部的二次函数y=m(x﹣1)2﹣4m的图象上有一动点P,过点P作x轴的平行线与其伴生一次函数的图象交于点Q,设点P的横坐标为n,直接写出线段PQ的长为时n的值.23.(12分)先化简:()÷,再从﹣2,﹣1,0,1这四个数中选择一个合适的数代入求值.24.如图,直线与第一象限的一支双曲线交于A、B两点,A在B的左边.(1)若=4,B(3,1),求直线及双曲线的解析式:并直接写出不等式的解集;(2)若A(1,3),第三象限的双曲线上有一点C,接AC、BC,设直线BC解析式为;当AC⊥AB时,求证:k为定值.

参考答案一、选择题(共10小题,每小题3分,共30分)1、A【解析】

过点A作AM⊥x轴于点M,设OA=a,通过解直角三角形找出点A的坐标,再根据四边形OACB是菱形、点F在边BC上,即可得出S△AOF=S菱形OBCA,结合菱形的面积公式即可得出a的值,进而依据点A的坐标得到k的值.【详解】过点A作AM⊥x轴于点M,如图所示.设OA=a=OB,则,在Rt△OAM中,∠AMO=90°,OA=a,sin∠AOB=1213∴AM=OA•sin∠AOB=1213a,OM=5∴点A的坐标为(513a,12∵四边形OACB是菱形,S△AOF=392∴12OB×AM=39即12×a×12解得a=±132∴a=132,即A(5∵点A在反比例函数y=kx∴k=52故选A.【解答】解:【点评】本题考查了菱形的性质、解直角三角形以及反比例函数图象上点的坐标特征,解题的关键是利用S△AOF=12S菱形OBCA2、D.【解析】试题分析:根据一次函数和反比例函数的性质,分k>0和k<0两种情况讨论:当k<0时,一次函数图象过二、四、三象限,反比例函数中,-k>0,图象分布在一、三象限;当k>0时,一次函数过一、三、四象限,反比例函数中,-k<0,图象分布在二、四象限.故选D.考点:一次函数和反比例函数的图象.3、C【解析】

先解每一个不等式,再根据结果判断数轴表示的正确方法.【详解】解:由不等式①,得3x>5-2,解得x>1,由不等式②,得-2x≥1-5,解得x≤2,∴数轴表示的正确方法为C.故选C.【点睛】考核知识点:解不等式组.4、B【解析】

设全组共有x名同学,那么每名同学送出的图书是(x−1)本;则总共送出的图书为x(x−1);又知实际互赠了210本图书,则x(x−1)=210.故选:B.5、D【解析】

根据正方形的边长,根据勾股定理求出AR,求出△ABR∽△DRS,求出DS,根据面积公式求出即可.【详解】∵正方形ABCD的面积为16,正方形BPQR面积为25,∴正方形ABCD的边长为4,正方形BPQR的边长为5,在Rt△ABR中,AB=4,BR=5,由勾股定理得:AR=3,∵四边形ABCD是正方形,∴∠A=∠D=∠BRQ=90°,∴∠ABR+∠ARB=90°,∠ARB+∠DRS=90°,∴∠ABR=∠DRS,∵∠A=∠D,∴△ABR∽△DRS,∴,∴,∴DS=,∴∴阴影部分的面积S=S正方形ABCD-S△ABR-S△RDS=4×4-×4×3-××1=,故选:D.【点睛】本题考查了正方形的性质,相似三角形的性质和判定,能求出△ABR和△RDS的面积是解此题的关键.6、C【解析】

根据AO=2,OB=1,BC=2,可得a=-2,b=1,c=3,进行判断即可解答.【详解】解:∵AO=2,OB=1,BC=2,∴a=-2,b=1,c=3,∴|a|≠|c|,ab<0,,,故选:C.【点睛】此题考查有理数的大小比较以及绝对值,解题的关键结合数轴求解.7、D【解析】试题分析:A.是轴对称图形,故本选项错误;B.是轴对称图形,故本选项错误;C.是轴对称图形,故本选项错误;D.不是轴对称图形,故本选项正确.故选D.考点:轴对称图形.8、D【解析】

直接利用倒数的定义结合绝对值的性质分析得出答案.【详解】解:−的倒数为−,则−的绝对值是:.故答案选:D.【点睛】本题考查了倒数的定义与绝对值的性质,解题的关键是熟练的掌握倒数的定义与绝对值的性质.9、C【解析】

如图所示,∵(a+b)2=21∴a2+2ab+b2=21,∵大正方形的面积为13,2ab=21﹣13=8,∴小正方形的面积为13﹣8=1.故选C.考点:勾股定理的证明.10、B【解析】

根据一元二次方程的解的定义,把x=2代入得4-6+k=0,然后解关于k的方程即可.【详解】把x=2代入得,4-6+k=0,解得k=2.故答案为:B.【点睛】本题主要考查了一元二次方程的解,掌握一元二次方程的定义,把已知代入方程,列出关于k的新方程,通过解新方程来求k的值是解题的关键.二、填空题(本大题共6个小题,每小题3分,共18分)11、-1≤a≤【解析】

根据题意得出C点的坐标(a-1,a-1),然后分别把A、C的坐标代入求得a的值,即可求得a的取值范围.【详解】解:反比例函数经过点A和点C.当反比例函数经过点A时,即=3,解得:a=±(负根舍去);当反比例函数经过点C时,即=3,解得:a=1±(负根舍去),则-1≤a≤.故答案为:-1≤a≤.【点睛】本题考查的是反比例函数图象上点的坐标特点,关键是掌握反比例函数y=(k为常数,k≠0)的图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.12、2【解析】

要求丝线的长,需将圆柱的侧面展开,进而根据“两点之间线段最短”得出结果,在求线段长时,根据勾股定理计算即可.【详解】解:如图,把圆柱的侧面展开,得到矩形,则这圈金属丝的周长最小为2AC的长度.∵圆柱底面的周长为6cm,圆柱高为2cm,∴AB=2cm,BC=BC′=3cm,∴AC2=22+32=13,∴AC=cm,∴这圈金属丝的周长最小为2AC=2cm.故答案为2.【点睛】本题考查了平面展开−最短路径问题,圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,高等于圆柱的高,本题就是把圆柱的侧面展开成矩形,“化曲面为平面”,用勾股定理解决.13、4【解析】∵四边形MNPQ是矩形,∴NQ=MP,∴当MP最大时,NQ就最大.∵点M是抛物线在轴上方部分图象上的一点,且MP⊥轴于点P,∴当点M是抛物线的顶点时,MP的值最大.∵,∴抛物线的顶点坐标为(2,4),∴当点M的坐标为(2,4)时,MP最大=4,∴对角线NQ的最大值为4.14、【解析】

根据题意可得阴影部分的面积等于△ABC的面积,因为△ABC的面积是菱形面积的一半,根据已知可求得菱形的面积则不难求得阴影部分的面积.【详解】设AP,EF交于O点,∵四边形ABCD为菱形,∴BC∥AD,AB∥CD.∵PE∥BC,PF∥CD,∴PE∥AF,PF∥AE.∴四边形AEFP是平行四边形.∴S△POF=S△AOE.即阴影部分的面积等于△ABC的面积.∵△ABC的面积等于菱形ABCD的面积的一半,菱形ABCD的面积=ACBD=5,∴图中阴影部分的面积为5÷2=.15、.【解析】

解:∵把x=1分别代入、,得y=1、y=,∴A(1,1),B(1,).∴.∵P为y轴上的任意一点,∴点P到直线BC的距离为1.∴△PAB的面积.故答案为:.16、45°【解析】过P作PM∥直线a,根据平行线的性质,由直线a∥b,可得直线a∥b∥PM,然后根据平行线的性质,由∠P=75°,∠2=30°,可得∠1=∠P-∠2=45°.故答案为45°.点睛:本题考查了平行线的性质的应用,能正确根据平行线的性质进行推理是解此题的关键,注意:两直线平行,内错角相等.三、解答题(共8题,共72分)17、(1)800,240;(2)补图见解析;(3)9.6万人.【解析】试题分析:(1)由C类别人数及其百分比可得总人数,总人数乘以B类别百分比即可得;(2)根据百分比之和为1求得A类别百分比,再乘以360°和总人数可分别求得;(3)总人数乘以样本中A、B、C三类别百分比之和可得答案.试题解析:(1)本次调查的市民有200÷25%=800(人),∴B类别的人数为800×30%=240(人),故答案为800,240;(2)∵A类人数所占百分比为1﹣(30%+25%+14%+6%)=25%,∴A类对应扇形圆心角α的度数为360°×25%=90°,A类的人数为800×25%=200(人),补全条形图如下:(3)12×(25%+30%+25%)=9.6(万人),答:估计该市“绿色出行”方式的人数约为9.6万人.考点:1、条形统计图;2、用样本估计总体;3、统计表;4、扇形统计图18、(1)EF∥BD,见解析;(2)①AE=AM,理由见解析;②△AEM能为等边三角形,理由见解析;(3)△ANF的面积不变,理由见解析【解析】

(1)依据DE=BF,DE∥BF,可得到四边形DBFE是平行四边形,进而得出EF∥DB;(2)依据已知条件判定△ADE≌△ABM,即可得到AE=AM;②若△AEM是等边三角形,则∠EAM=60°,依据△ADE≌△ABM,可得∠DAE=∠BAM=15°,即可得到DE=16-8,即当DE=16−8时,△AEM是等边三角形;(3)设DE=x,过点N作NP⊥AB,反向延长PN交CD于点Q,则NQ⊥CD,依据△DEN∽△BNA,即可得出PN=,根据S△ANF=AF×PN=×(x+8)×=32,可得△ANF的面积不变.【详解】解:(1)EF∥BD.证明:∵动点E从点D出发,在线段DC上运动,同时点F从点B出发,以相同的速度沿射线AB方向运动,∴DE=BF,又∵DE∥BF,∴四边形DBFE是平行四边形,∴EF∥DB;(2)①AE=AM.∵EF∥BD,∴∠F=∠ABD=45°,∴MB=BF=DE,∵正方形ABCD,∴∠ADC=∠ABC=90°,AB=AD,∴△ADE≌△ABM,∴AE=AM;②△AEM能为等边三角形.若△AEM是等边三角形,则∠EAM=60°,∵△ADE≌△ABM,∴∠DAE=∠BAM=15°,∵tan∠DAE=,AD=8,∴2﹣=,∴DE=16﹣8,即当DE=16﹣8时,△AEM是等边三角形;(3)△ANF的面积不变.设DE=x,过点N作NP⊥AB,反向延长PN交CD于点Q,则NQ⊥CD,∵CD∥AB,∴△DEN∽△BNA,∴=,∴,∴PN=,∴S△ANF=AF×PN=×(x+8)×=32,即△ANF的面积不变.【点睛】本题属于四边形综合题,主要考查了平行四边形的判定与性质,等边三角形的性质,全等三角形的判定与性质,解直角三角形以及相似三角形的判定与性质的综合运用,解决问题的关键是作辅助线构造相似三角形,利用全等三角形的对应边相等,相似三角形的对应边成比例得出结论.19、CE的长为(4+)米【解析】

由题意可先过点A作AH⊥CD于H.在Rt△ACH中,可求出CH,进而CD=CH+HD=CH+AB,再在Rt△CED中,求出CE的长.【详解】过点A作AH⊥CD,垂足为H,由题意可知四边形ABDH为矩形,∠CAH=30°,∴AB=DH=1.5,BD=AH=6,在Rt△ACH中,tan∠CAH=,∴CH=AH•tan∠CAH,∴CH=AH•tan∠CAH=6tan30°=6×=2(米),∵DH=1.5,∴CD=2+1.5,在Rt△CDE中,∵∠CED=60°,sin∠CED=,∴CE==(4+)(米),答:拉线CE的长为(4+)米.考点:解直角三角形的应用-仰角俯角问题20、(1)见解析;(2)+【解析】

(1)利用题中的边的关系可求出△OAC是正三角形,然后利用角边关系又可求出∠CAB=30°,从而求出∠OAB=90°,所以判断出直线AB与⊙O相切;(2)作AE⊥CD于点E,由已知条件得出AC=2,再求出AE=CE,根据直角三角形的性质就可以得到AD.【详解】(1)直线AB是⊙O的切线,理由如下:连接OA.∵OC=BC,AC=OB,∴OC=BC=AC=OA,∴△ACO是等边三角形,∴∠O=∠OCA=60°,又∵∠B=∠CAB,∴∠B=30°,∴∠OAB=90°.∴AB是⊙O的切线.(2)作AE⊥CD于点E.∵∠O=60°,∴∠D=30°.∵∠ACD=45°,AC=OC=2,∴在Rt△ACE中,CE=AE=;∵∠D=30°,∴AD=2.【点睛】本题考查了切线的判定、直角三角形斜边上的中线、等腰三角形的性质以及圆周角定理、等边三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.21、【思考】h1+h1=h;【探究】h1-h1=h.理由见解析;【应用】所求点M的坐标为(,1)或(-,4).【解析】

思考:根据等腰三角形的性质,把代数式化简可得.探究:当点M在BC延长线上时,连接,可得,化简可得.应用:先证明,△ABC为等腰三角形,即可运用上面得到的性质,再分点M在BC边上和在CB延长线上两种情况讨论,第一种有1+My=OB,第二种为My-1=OB,解得的纵坐标,再分别代入的解析式即可求解.【详解】思考即h1+h1=h.探究h1-h1=h.理由.连接,∵∴∴h1-h1=h.应用在中,令x=0得y=3;令y=0得x=-4,则:A(-4,0),B(0,3)同理求得C(1,0),,又因为AC=5,所以AB=AC,即△ABC为等腰三角形.①当点M在BC边上时,由h1+h1=h得:1+My=OB,My=3-1=1,把它代入y=-3x+3中求得:,∴;②当点M在CB延长线上时,由h1-h1=h得:My-1=OB,My=3+1=4,把它代入y=-3x+3中求得:,∴,综上,所求点M的坐标为或.【点睛】本题结合三角形的面积和等腰三角形的性质考查了新性质的推理与证明,熟练掌握三角形的性质,结合图形层层推进是解答的关键.22、y=x﹣5【解析】分析:(1)根据定义,直接变形得到伴生一次函数的解析式;(2)求出顶点,代入伴生函数解析式即可求解;(3)根据题意得到伴生函数解析式,根据P点的坐标,坐标表示出纵坐标,然后通过PQ与x轴的平行关系,求得Q点的坐标,由PQ的长列方程求解即可.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论