版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
CO变换工艺发展过程及趋势CO变换工艺发展过程及趋势CO变换工艺发展过程及趋势xxx公司CO变换工艺发展过程及趋势文件编号:文件日期:修订次数:第1.0次更改批准审核制定方案设计,管理制度CO变换工艺发展过程及趋势摘要本文介绍了CO变换工艺的发展过程和趋势,论述了变换催化剂、反应器、节能工艺和数字模型的发展,论述了变换工艺的发展方向,指出了需要研究和解决的问题。关键词CO变换;催化剂;合成气;节能前言一氧化碳变换(也称水煤气变换,watergasshift)是指合成气中的一氧化碳借助于催化剂的作用,在一定温度下与水蒸气反应,生成二氧化碳和氢气的过程。通过变换反应既降低了合成气中的一氧化碳含量,又得到了更多氢气,调节了碳氢比,满足不同的生产需要(例如合成甲醇等)。其工业应用已有90多年历史。在合成气制醇、制烃催化过程中,低温水气变换反应通常用于甲醇重整制氢反应中大量CO的去除,同时在环境科学甚至在民用化学方面所起作用也不可忽视,如汽车尾气的处理、家用煤气降低CO的含量等。本文将从CO变换工艺的几个因素展开论述。一、CO变换原理[1]一氧化碳变换反应是在催化剂存在的条件下进行的,是一个典型的气固相催化反应。变换过程为含有C、H、O三种元素的CO和H2O共存的系统,在CO变换的催化反应过程中,主要反应为:CO+H2O=CO2+H2
ΔH=-mol在某种条件下会发生CO分解等其他副反应,分别如下:
2CO=C+CO2
2CO+2H2=CH4+CO2
CO+3H2=CH4+H2O
CO2+4H2=CH4+2H2O变换反应平衡受多种反应条件影响:(1)温度影响由于CO变换反应是个放热可逆反应,因此低温有利于平衡向右移。(2)水碳比影响提高水碳比,可增加一氧化碳的转化率,有利于平衡向右移。(3)原料气含CO2影响CO2为反应产物,应尽量降低原料气中CO2的含量,确保平衡不向左移动。变换反应速率受多种反应条件影响:(1)压力影响加压可提高反应物分压,在3MPa以下,反应速率与压力平方成正比。(2)水碳比影响在水碳比低于4的情况下,提高水碳比可使变换反应速率加快。(3)温度影响由于CO变换反应是个放热可逆反应,存在最佳反应温度。该温度与气体原始组成、转化率及催化剂有关。当催化剂和气体原始组成一定时,最佳反应温度随转化率的升高而降低。为了达到理想的最终转化率,应使操作温度沿着最佳反应温度曲线由高温至低温转移,使CO变换的过程速率达到最快。二、CO变换技术发展的历史背景合成气的生产和应用在化学工业中具有极为重要的地位。18世纪中叶由于工业革命的进展,英国对炼铁用焦炭的需要量大幅度地增加,炼焦炉应运而生,人类迈入煤化工时代。1913年已开始从合成气生产氨。但合成气来源以煤为主,含有高含量的CO。为了适应合成氨与后来的合成甲醇工业的氢需求,催生了CO变换技术。随着以天然气与石油为原料的制合成气工业的发展,CO变换技术一度被冷淡。1973年爆发中东战争,西方世界陷入石油危机的灾难中,煤制合成气的高潮又来临了。伴随着煤制合成气的复兴,CO变换技术有了长足的发展,凝聚了无数化工人的心血。三、CO变换催化剂的发展CO变换反应在催化条件下才有足够高的反应速率和转化率,CO变换工艺必须采用催化剂才有良好的经济效益。可见,CO变换技术的发展是伴随着催化剂的发现而前进的。近十几年来,各国学者开展了不少研发工作,不断改进和提高变换催化剂性能,目前可使变换后气体中CO含量(体积分数,下同)降至%以下。[2]为了满足让组分存在差别的原料气能进行CO变换的要求,需要不同种类的催化剂:1.铁铬系变换催化剂在1912年,德国人W·Wied利用FeO—A12O3,做CO变换催化剂。1915年开始工业应用,在20世纪30年代就得到了广泛的使用。典型的铁基催化剂组成为%Fe2O3,10%Cr2O3,%MgO,其余为挥发分。[3]Cr2O3为主要助剂,含量不能超过14%,还可以添加K2O、CaO或Al2O3等助剂。其使用温度在300—530℃,属高温或中温变换催化剂。60年代以前,变换催化剂普遍采用Fe-Gr催化剂。但由于铬是剧毒物质,造成生产、使用和处理过程中对人员和环境的污染及毒害,因此国内外都进行了无铬铁系高温变换催化剂的研究。2.铜基变换催化剂1963年美国UCI公司研制成功了C18-1型双金属低温变换催化剂,组成为CuO33%、ZnO67%。美国盖法勒化学公司生产了组成为CuO:ZnO=1:l的G-66B型低温变换催化剂,得到广泛应用。[]其化学组成以CuO为主,Zno和Al2O3为促进剂和稳定剂。适用温度范围是180-260℃,属于低温变换催化剂。由于催化活性高,应避免反应气中CO含量过高造成反应大量放热,从而烧结催化剂内的细小铜晶粒。在低变催化剂中常添加ZnO、Al2O3和Cr2O3三种组分,因三者的熔点都明显高于Cu的熔点,最适宜作为Cu微晶在细分散态的间隔稳定剂。[4]高含量CO的原料气应先经高温变换将CO含量降至3%,才能进行低温变换。Cu-Zn系变换催化剂虽有良好的低温活性,但对硫、氯等毒物非常敏感。因此适用于含硫量低而容易脱硫的由天然气或轻油炼制的合成气,不适用于含硫量很高的煤或重油制取的粗合成气。目前在工业上CO变换过程施行先高温变换再低温变换,从而保证了很高的转化率和较快的反应速率。[5]3.钴钼系耐硫催化剂1978年首次实现工业化。化学组成为Co、Mo氧化物并负载在氧化铝上,反应前将Co、Mo氧化物转变为硫化物才有活性。因此其与传统的铁铬、铜锌催化剂相比,具有操作弹性大、活性高、不易中毒、耐硫无上限等优点。有很宽的活性温区(160-500℃),特别是用于含硫高的渣油及煤为原料的制气中,可直接进行变换,使流程简化、蒸汽消耗降低。以TiO2为助剂调变钴钼系催化剂的性能,可明显改善活性组分的分散状态,特别是对3500C以下的活性提高更为有利。TiO2促进Mo离子的还原,使活性离子Mo5+和Mo6+的数目增加[6]。4.新型催化剂到目前为止,已有3个系列的水气变换用催化剂实现了工业化,即铁系高温变换催化剂、铜系低温变换催化剂和钴钼系耐硫宽温变换催化剂。三种工业催化剂的应用非常广泛,而且随着新型助剂的研发正在向更高活性、更宽温度、更长使用寿命方向发展。国内外工业化水气变换催化剂已经非常成熟,但是目前对新型助剂催化剂的研究还是热门,由于催化剂的制备方法、测试手段存在差异,因此得到的结论相差很大,需要深入研究。催化剂研究的最终目的应该是工业应用,有应用价值的催化剂必将成为将来学者的研究重点。未来高变催化剂的开发,应立足于降低能耗,提高效率,有可靠的操作性和灵活性,针对不同原料和不同生产工艺的要求,具有选择性高、耐毒性能好,不发生副反应等特点。目前,铜促进的铁铬及铜基催化剂已广泛用于低水/碳操作条件下的大型合成氨装置,这是近几年来在变换催化剂方面取得的重大突破。氧化锰系催化剂的研究已显示出较大的开发潜力和使用前景,这将大大加快其工业化进展[7]。四、CO变换加压技术的发展20世纪50年代前,CO变换在常压下进行;20世纪60年代后,采用天然气为原料,大多采用加压蒸汽转换法,CO变换在加压下进行,压力一般在4.0MPa以下;此后,以煤(焦)为原料的常压造气的企业,很多也改用加压变换,以降低能耗;采用粉煤气流床加压气化技术制气的装置,其CO变换压力一般在5.5MPa以下;以渣油为原料的部分氧化法加压气化的压力最高已达到8.5MPa,其变换压力也随之而变。五、CO变换反应器的发展1.绝热固定床反应器[8]CO变换反应属于典型的气固相催化反应。由于绝热固定床的结构形式比较简单,并且气体以活塞流通过催化剂层,轴向返混小,气体的转换率高,现在大型节能型合成氨企业中变换工艺仍采用绝热反应器形式,即多段中温变换反应器接单段低温变换反应器,但存在汽气比较大,能耗高的缺点,同时催化剂使用前的还原反应放热量巨大,对催化剂寿命构成危害。2.等温固定床反应器等温变换工艺将换热器建于反应器中,颗粒状的催化剂与冷却水管壁换热,及时移去反应热。保持床层基本恒温,有效地解决了操作中一系列难题。(1)轴向等温反应器80年代后期,德国LinderLAC工艺首次使用等温变换反应器,结构为一个内置蒸气发生器盘管的单台变换炉,管间装催化剂,管内通冷却水。恒温250C操作,一次变换可使CO<0.7%(干基)。该工艺已在德国UKW无故障运行10余年[9]。英国ICI公司LCA工艺将中低温变换反应器合并在一个管壳式反应器内进行,采用Cu基催化剂,管内装催化剂,管间为工艺冷凝液,能有效控制炉温在265℃进行反应。我国在引进国外技术的同时,出现了两类等温反应器的变种形式,即列管式和蛇管式等温绝热反应器,在等温床下面再设置一段绝热床,以确保CO的转化率[10]。(2)轴径向等温固定床反应器[11]俄罗斯Fastengineering公司的轴径向等温变换反应器,其结构如图3所示:换热管呈螺旋状排列,换热用的水或蒸气走管内,催化剂装填在管间。反应气体从上部进入后,沿中心空管经分布后,进入催化剂床层,沿径向从靠壁处出催化剂层汇合,从反应器底部出。在22万t/a氨的合成氨流程中,变换使用ϕ3—5mm的GIaP-11催化剂,变换后CO的含量为%(干基)左右,反应器压降小于MPa。该反应器的缺点是结构比较复杂,布气系统复杂。等温反应器比较如表1所示。六、CO变换工艺的数字化模拟发展1.数值模拟CO变换炉的研究进展变换炉是变换工段发生变换反应的地方,是变换流程中最重要的反应装置,对CO变换炉建立数学模型,采用计算机编程的方法进行求解,大大简化了工作量,使计算结果更加精确,可以为工艺设计提供依据,探讨优化合理的工艺操作条件,对CO变换炉的设计,对煤制SNG厂进行技术改进和节能,具有一定的参考指导意义。数学模拟经过几十年的发展,已经被广泛应用于化工的各个领域。国内外对CO变换过程也做了大量的研究模拟工作:徐懋生等提出了加压中温变换炉内工业颗粒催化剂内传质过程的数学模型。Plus软件模拟CO变换流程的研究进展自上世纪70、80年代以来,化工流程模拟系统开始进入大规模地推广普及阶段。首先,由于化工模拟在理论和技术上的快速进步,拓宽了软件的使用范围;其次,借助于计算机辅助工具的快速发展(即研究手段的进步),便于工程师更好地运用化工软件对各种技术方案进行评比分析。运用流程模拟软件对流程进行模拟:当系统处于开发的初级阶段时,可以对过程工艺流程作经济评价和可行性分析,确定最佳方案;当提出建设一个新厂时,通过模拟软件的设计优化功能以及结合中试的实验数据,提高建设速度;当利用流程模拟软件对一个已建成的老厂进行模拟时,利用软件的优化分析功能设计出最佳操作条件,改善生产效率[12]。近年来,由于AspenPlus强大的功能以及庞大的规模,它已在全球范围内广泛运用。国内外应用AspenPlus流程模拟软件对CO变换过程进行仿真模拟也做了大量的研究工作,例如:赵晓[13]运用AspenPlus软件建立了整个煤基多联产工艺的仿真模型,包括对CO变换过程的仿真模拟,对该模型进行核算,得出的结果很好地预测了整个流程的生产性能,并通过软件的灵敏度分析,对整个流程进行了合理地优化。七、CO变换节能工艺的创新[14]近几年来,“两中两低”或“一中两低”变换工艺被广大中小氮肥厂所采用,这种工艺把“全低变”、“中变串低变”的长处结合起来,避免了目前全低变工艺对气体中硫含量要求高、设备腐蚀严重、催化剂易失活和工艺气净化要求高的缺点,有利于节能降耗和操作稳定,保证了生产长周期、安全稳定地运行。实践证明,“两中两低”、“一中两低”工艺是适合我国中小化肥行业实际的先进技术。1.中变串低变流程中变串低变流程是80年代中期发展起来的。所谓中变串低变流程就是在铁铬系催化剂之后串人钻钥系耐硫变换催化剂,首先让中变承担大部分的变换任务(转化率90%,出口CO含量5%一7%),然后通过低变进一步转化(转化率可达99%,出口CO含量降低到%一%)。在中变串低变流程中,由于采用低温活性好的钻铝耐硫变换催化剂,使得变换炉人口半水煤气汽一气比由过去的单一中变流程时的一,降低到目前的~,从而使变换蒸汽消耗量从500kg/tNH3,降低到650kg,/tNH3,为实现蒸汽自给提供了有力的保证。变换气中CO含量由单一中变流程的3%~%降到%~%,从而增加了原料气中的有效成分。合成氨半水煤气消耗量降低,增加了氨产量,扩大了生产能力。同时,变换气中CO含量降低,使铜洗负荷减轻,精炼工段再生气放空量减少,铜液循环量减小,提高了设备利用率,减少了电耗。2.低变工艺低变工艺是在中变串低变的基础上发展起来的新变换工艺。全低变工艺的开发成功,又一次推动了合成氨变换工艺的发展。低变工艺中全部采用钻铝系耐硫变换催化剂,由于其起始活性温度低,半水煤气预热负荷小换热设备、热回收设备的热负荷都将减少,在同等设备规格的前提下,生产能力可较大幅度提高,有利于挖掘设备的潜力,节约投资。全低变工艺由于降低了系统的平均温度,从而大大有利于CO变换反应平衡,使吨氨蒸汽消耗量进一步降低到200kg左右。在全低变流程中,由于钻钥系变换流程人炉汽一气比低,热水塔变换气出口的热量和温度均难以满足铜洗工段铜液再生的需要,故流程中不必设置第二热水塔,铜液再生所需的热源由合成工段提供[15]。结语近年来,变换过程主要向着节能和高效的方向发展。低投资、低能耗、节省动力、降低蒸汽消耗、“余热”能合理利用等,这些都是需要努力的目标,并且还要求在蒸汽消耗不增大时,能够提高变换率,降低运行费用。这就要求我国有CO变换项目的企业在研发催化剂、建立数学模型、设计反应器、设计节能工艺等方面上下多点功夫,这些都可以优化操作条件的因素使反应中的CO转化率尽可能的达到最大,产量达到最优,节能降耗,对实际生产起到指导参考作用。随着石油天然气资源的枯竭,煤炭资源仍有相当长的开采期,相信CO变换技术将在这种资源趋势下发展得越来越好。参考文献[1]米镇涛.化学工艺学[M].第二版.北京:化学工业出版社,2010:174-176.[2]王文善.从CO变换工艺技术的历史演变看等温变换的历史性贡献[J].氮肥技术.2013,34(5):1-5.[3]张永光,戴春皓,田森林等.工业化CO变换催化剂研究进展[J].云南化工.2008(2),35(01).[4]蔡丽萍,沈菊李.费-托合成中的水煤气变换反应[J].化学通报.2006,69.[5]徐静.煤制SNG中CO变换过程的研究进展[J].当代化工.2014(3),43(3).[6]戴深峻.钾促进钴钼耐硫CO变换催化剂的XPS和TPR表征[J].应用化学,2001,18(1):25-28.[7]赵志利,何观伟等.高温变换催化剂的发展方向[J].工业催化.1998,2.[8]LauzierGC,RevolJF,DebziEM,etal.Hydrolyticdegradationofisolatedpoly(β-hyd
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度机器设备租赁与维修服务合同
- 2024年度IT系统开发与实施合同
- 2024年度化妆品产品摄影合同
- 2024年度新能源项目开发策划服务合同
- 2024年度品牌授权合同标的品牌权益保护
- 2024年度木饰面品牌保护法律服务合同
- 飞机修理技术方案
- 2024年度品牌策划与推广合同标的及执行方案
- 2024年度特许连锁经营合同
- 2024-2025学年部编版历史八年级第二学期期中模拟训练卷(含答案)
- 消防工程消防器材供应方案
- 就业指导课件(全)-就业形势
- 配电线路巡视培训课件
- 遇事如何不推诿培训课件
- 大学英语(西安石油大学)智慧树知到期末考试答案2024年
- T-CRHA 028-2023 成人住院患者静脉血栓栓塞症风险评估技术
- 网格员工作汇报 (第二稿)
- 2024年医学高级职称-皮肤与性病学(医学高级)笔试历年真题荟萃含答案
- 国家治理现代化的理论框架及其构建
- 应用心理学博士研究计划书
- T-NAHIEM 98-2023 病理科(中心)建设与配置标准
评论
0/150
提交评论