LED封装物料介绍课件_第1页
LED封装物料介绍课件_第2页
LED封装物料介绍课件_第3页
LED封装物料介绍课件_第4页
LED封装物料介绍课件_第5页
已阅读5页,还剩56页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

LED封装物料目录一,LED基本概念介绍;二,LED封装所用物料明细;三,分别对各种物料进行分析介绍。一,LED基本概念1.什么叫LED?发光原理是什么?LED(LightEmittingDiode),发光二极管,是一种固态的半导体器件,它可以直接把电转化为光。LED的心脏是一个半导体的晶片,晶片的一端附在一个支架上,一端是负极,另一端连接电源的正极,使整个晶片被环氧树脂封装起来。半导体晶片由两部分组成,一部分是P型半导体,在它里面空穴占主导地位,另一端是N型半导体,在这边主要是电子。但这两种半导体连接起来的时候,它们之间就形成一个“P-N结”。当电流通过导线作用于这个晶片的时候,电子就会被推向P区,在P区里电子跟空穴复合,然后就会以光子的形式发出能量,这就是LED发光的原理。而光的波长决定光的颜色,是由形成P-N结材料的禁带宽度决定的。2.5米宽耐力板已由正成企业安装调试成功!大大改善采光效果二,LED封装所用物料LED封装主要相关原物料有PIN针、PCB、COB基板、支架、银胶/绝缘胶、芯片、荧光粉、、抗沉淀粉、扩散剂、铝线/金线、环氧树脂、硅胶、围坝胶、REF、TAPE、模条、导光板、扩散片/反射片等1.基板COB基板铝基板、铜基板、环氧-玻纤布基PCB、陶瓷板…特征:1.散热性

金属基板散热性能优越,但铝基板有一层绝缘导热层,导热率很低,严重影响铝基板整体导热能力。2.机械加工性能

金属基覆铜板具有高机械强度和韧性,此点大大优于刚性树脂类覆铜板和陶瓷基板。3.热膨胀系数陶瓷板与LED芯片衬底热膨胀系数相近,稳定性优异。

镜面铝定义:通过轧延、打磨等多种方法处理,使板材表面呈现镜面效果的铝板。镜面铝分类:贴膜镜面铝,国产抛光镜面铝,进口抛光镜面铝,进口氧化镜面铝,以及超镜面铝板。镜面反射率:86%普通镜面和95%超镜面(目前市场上已出现98%的镜面铝)。

阳极氧化镜面铝:铝经过阳极氧化处理,可在表面形成较高电绝缘性的氧化铝薄膜,该薄膜的导热系数约为2W/(m·K),高于铝基覆铜板中绝缘层的0.2-0.8W/(m·K),且氧化铝薄膜的厚度远小于绝缘层,所以优势是比较明显的。陶瓷板陶瓷散热基板材料分类:AL2O3或ALN陶瓷基板陶瓷散热基板工艺分类:▲LTCC又称为低温共烧多层陶瓷基板▲HTCC又称为高温共烧多层陶瓷▲DBC直接接合铜基板▲DPC直接镀铜基板陶瓷散热基板特性比较-热传导率LTCC为降低其烧结温度而添加了30%~50%的玻璃材料,使其热传导率降至2~3W/m▪K左右;HTCC因其普遍共烧温度略低于纯Al2O3基板之烧结温度,而使其因材料密度较低使得热传导系数低Al2O3基板约在16~17W/m▪K之间。DBCDPC略lamp-LED支架

支架材质

支架一般分为碗杯型、平头型和特殊型,其材质

为通常为铁材,根据需要可选择铜材.支架厚度通常为0.5mm,支架外部电镀Ag/Cu/Ni/或Sn等物质.

支架电镀

支架电镀可分为半镀和全镀,半镀是电镀支架上

Bar下约2mm以上区域,全镀为整个支架电镀.半镀可节省支架成本,目前使用的2002系列支架大部分为半镀支架.一般电镀厚度在60″

支架的保存

支架应有常温下密封保存,当支架表面变色时,要停止使用.食人鱼支架食人鱼支架为铜制的,面积较大,传导快

承受电流70-80mA

DBC高绝缘性的Al2O3或AlN陶瓷支架的单面或双面覆上铜金属后,经由高温1065~1085℃的环境加热,使铜金属因高温氧化、扩散与Al2O3材质产生(Eutectic)共晶熔体,使铜金与陶瓷支架黏合,形成陶瓷复合金属支架,最后依据线路设计,以蚀刻方式备制线路直接接合铜支架(DBC)DPC技术则是利用直接披覆技术,将Cu沉积于Al2O3支架之上,其制程结合材料与薄膜制程技术,其产品为近年最普遍使用的陶瓷散热支架。直接镀铜支架(DPC)DPC的制程温度仅需250~350℃左右的温度即可完成散热支架的制作,完全避免了高温对于材料所造成的破坏或尺寸变异的现象,也排除了制造成本费用高的问题。DPC则是采用的薄膜制程制作,利用了真空镀膜、黄光微影制程制作线路,使支架上的线路能够更加精确,表面平整度高,再利用电镀/电化学镀沉积方式增加线路的厚度,DPC金属线路厚度可依产品实际需求(金属厚度与线路解析度)而设计。解析度在金属线路深宽比为1:1的原则下约在10~50um之间。因此,DPC杜绝了LTCC/HTCC的烧结收缩比例及厚膜制程的网版张网问题。线路高精准度与高表面平整度的的特性,非常适用于覆晶/共晶接合方式的制程,能够大幅减少LED产品的导线截陎积,进而提升散热的效率。然而其材料控制与制程技术整合能力要求较高,这使得跨入DPC产业并能稳定生产的技术门槛相对较高。金线:电导率大、耐腐蚀、韧性好,最大优点是抗氧化,常用键合线金银合金线:适用于LED直插和SMD产品封装焊线镀钯铜线:适用于LED直插和集成电路封装焊线铜线:高纯铜,适用于功率器件封装焊线,价格金线10%-30%,电导热导机械性能,焊点可靠性大于金铝线:多半用在功率型组件的封装,线径较粗有5mil~20mil,在分立器件上因为功率的原因也会长期占据市场金线失效模式:虚焊脱焊,工艺不当,芯片表面氧化和铝的金属间化合物:“紫斑”(AuAl2)和“白斑”(Au2Al),Au和Al两种元素的扩散速率不同,导致界面处形成柯肯德尔孔洞以及裂纹。降低了焊点力学性能和电学性能2,键合线铜线失效模式:1.铜容易被氧化,键合工艺不稳定2.硬度、屈服强度等物理参数高于金和铝,键合需要更大的超声能量和键合压力,硅芯片造成损伤铝线失效模式:1.断颈,基板松动不稳,夹具不良2.芯片漏电,线尾过长3.虚焊,脱焊,电极氧化不良4.打线后芯片破损,芯片问题,机台压力设置金线与铝线的优势与劣势金线具有电导率大、耐腐蚀、韧性、抗氧化性好等优点,广泛应用于集成电路,相比较其它材质而言金线价格最贵。铝线电导率、耐腐蚀、韧性等与金线相比较差,目前多用于功率型组件上,价格便宜。金属间键合✪铝与金键合后化合物的生成会减弱金属间的键结,原因在于,金(2.54)的电负度和铝(1.61)的电负度的差别比较大,电负度差大反应力越大。✪铝与铜的电负值差异比与金的小,键合性能优于铝与金键合。✪铜与银的电负值接近,结合效果较好。(芯片在选择铝线键合时芯片电极选择铝电极比金电极性能更优)LED芯片衬底碳化硅(SiC)、蓝宝石(Al2O3)、硅(Si)三种衬底比较SiC衬底

化学稳定性好、导电性能好、导热性能好、不吸收可见光价格太高、晶体质量难以达到Al2O3和Si那么好、机械加工性能比较差吸收380nm以下的紫外光,不适合380nm以下的紫外LED。优异的的导电性能和导热性能,采用上下电极结构LED芯片的分类1.按发光亮度分:A.一般亮度:R﹑H﹑G﹑Y﹑E等.

B.高亮度:VG﹑VY﹑SR等

C.超高亮度:UG﹑UY﹑UR﹑UYS﹑URF﹑UE等

D.不可見光(紅外線):IR﹑SIR﹑VIR﹑HIR

E.紅外線接收管:PT

F.光電管:PD

2.按組成元素分:二元晶片(磷﹑鎵):H﹑G等

三元晶片(磷﹑鎵﹑砷):SR﹑HR﹑UR等

四元晶片(磷﹑鋁﹑鎵﹑銦):SRF﹑HRF﹑URF﹑VY﹑HY﹑UY﹑UYS﹑UE﹑HE、UG3.按材料特性分正装结构P型GaN传导性能不佳,需在P区表面蒸镀一层Ni-Au金属电极层。P区为获得好的电流扩展,Ni-Au金属电极层不能太薄,器件的发光效率受到很大影响,要同时兼顾电流扩展与出光效率二个因素。金属薄膜的存在,总会使透光性能变差。引线焊点的存在也使器件的出光效率受到影响。GaNLED倒装芯片的结构可以从根本上消除上面的问题。芯片的储存条件开封前在温度不超过30°,湿度不超过80%可长期保存;开封后相同温度湿度保存(湿度越低越好),下次使用前最好烘焙处理,温度60-80°,烘焙24小时。不同厂家LED储存方式略有不同,这个还要考虑防静电等级及表面封装方式等因素!(参考cree)开封前常温(温度不超过40℃)湿度不超过80%可长期保存,开封后常温,无尘使用便可,未用完用蓝膜盖封即可,有防潮柜时,防潮柜湿度设置越低越好(一般设置20%-60%,湿度回复在20s内)芯片要立放,可避免存放时间太长因重量影响导致芯片陷入蓝膜内,固晶时吸盘容易出现吸晶失败4.胶水LED封装胶水按作用可分为固晶胶、围坝胶和封装胶,而固晶胶有绝缘胶和银胶之分,银胶导电和导热能力较强,适合用在垂直电极芯片和大功率产品上使用,封装胶主要有硅胶和环氧树脂,UC胶,环氧树脂透光性较强,导热性差,耐温性以及耐低波段光强差,所以环氧树脂目前一般只用在较低功率产品封装,比如二极管和DISPLAY上等,UV胶水是指紫外光照射迅速固化的一种胶水,对缩短LED生产周期有较大帮助,但目前还在研发当中,品质不稳定,未进行量产。硅胶主要技术参数环氧树脂主要技术参数围坝胶主要技术参数银胶主要技术参数硅橡胶按分子链基团的种类分:甲基系有机硅胶(大部分,耐侯性更好)苯基系有机硅胶(成本高,折射率更好)按硫化条件分:高温固化型LED硅胶(聚硅氧烷,分子量40~80万)室温固化型LED硅胶(分子量3~6万,双组分和单组分包装)封装胶水作用:1.对芯片进行机械保护,应力释放2.一种光导结构3.折射率介于芯片和空气之间,扩大全反射角,减少光损失主要分硅胶(硅橡胶与硅树脂)、环氧树脂硅树脂按分子链基团的种类分:甲基硅树脂苯基硅树脂3.甲基苯基硅树脂硅橡胶与硅树脂特性硅橡胶热稳定性好、柔软、封装出来的成品光衰不明显,但折射率较低;而硅树脂硬度稍大、折射率较高、封装出来的成品衰减相对明显。针对大功率LED封装,主推硅橡胶的杰出代表是日本信越,其主要产品有配荧光粉用的KER6000,用的KER2500/KER2600;而硅树脂方面则由美国道康宁领衔,目前主推产品有配荧光粉的OE6550,灌封用的OE6520/OE6450/OE6630/SR-7010。硅橡胶和硅树脂在使用上其实并没有太大的差别,但是硅树脂的抗张强度耐老化方面要比硅橡胶差一些,而在耐硫化以及粘结性能方面又强于硅橡胶,所以硅树脂很少拿来做大面积的SMD及其他产品,比如信越的1018做3528很好,但做5050就容易裂胶。硅树脂大多是高折射类的产品,有些产品达到1.57的折射率,这是硅橡胶难以企及的,特殊产品低折。硅树脂的硬度一般比较高,大多在邵D35(A85)以上,甚至达到邵D70以上,因此很多硅树脂类的产品在过回流焊的时候都会裂胶,这很正常。同时,硅树脂的排泡性能会略逊于硅橡胶,因为硅树脂是交联网状分子结构,而硅橡胶大多是线性结构,这也可以拿来解释硅树脂为何粘结力强于硅橡胶。也是因为这种结构,其内的气泡容易被交联网状分子结构所阻挡,难以排除,这时就要考验添加剂脱泡剂的能力了。现在市面上的很多产品其实都不是纯粹意义上的硅橡胶或者硅树脂,都做了一些分子结构上的改性。硅胶优点:1.耐温Si-O键为主链结构,键能121千卡/克分子,高于C-C82.6,热稳定性高,高温或辐射化学键不断裂,也耐低温,化学,物理,机械性能,随温度的变化小。2.耐候性主键为Si-O,无双键,不易被紫外光和臭氧分解。自然环境下可使用几十年。3.电气绝缘性能介电损耗、耐电压、耐电弧、耐电晕、体积电阻系数和表面电阻系数好,电气性能受温度和频率的影响很小。良好拒水性,在湿态条件下使用具有高可靠性。4.低表面张力和低表面能疏水、消泡、泡沫稳定、防粘、润滑、上光等性能优异。在LED上的应用(1)固晶胶(2)混荧光粉硅胶(3)表面填充LED硅胶:保护LED芯片,大功率LED透镜内填充、透镜模封、贴片式平面封装、COB式大面积不规格封装等。硅胶成分多少对硅胶性能影响1、乙烯基硅树脂偏多,表面会粘手;2、含氢硅油偏多,硅胶硬度会提升;3、偶联剂偏多,硅胶与基板粘合力会变化;DSC曲线测试分析:DSC可以判断催化剂用量和阻聚剂以及有机硅活性官能团含量,可以观察放热峰的面积和时间,不同硅胶批次间的峰值温度最多相差3-5℃之间。硅胶失效模式非法添加造成的硅胶失效:添加环氧树脂,对PPA的附着会提高,对固化,透光折射和MOD硬度没影响,但会造成胶层的黄变,苯基类的硅胶也会引起变黄。添加荧光粉,添加填充物达到要求的硬度,胶层在固化后发生黄边,为了控制颜色的发黄,所以添加荧光粉,半年时间就会失效硅胶在使用过程中出现的常见问题1、胶裂大部分客户使用5050对高折1.54的硅胶来做测试评估。在300个回合的冷热冲击-40度+100度条件15分钟一次测试出来无胶裂。那么其他产品可以放心使用。胶裂原因主要是硬度和胶水的分子结构以及填充料的好坏有关。还有对支架PPA材料接密性和胶水的内应力附着力表现有关。好的胶水就算开裂也是不容易脱落下来的。不会整个胶水全部脱落的很干净。客户使用比较理想的硬度是35D-或者65A。混合粘度在4800左右。如果是信越的1018100个回合估计就挂了。2、气泡气泡在贴片上出现的比较少,大多是低折1.41用在集成上出现的比较多。贴片出现气泡基本上都是由于支架添加2次口水料多,容易吸水气。在南方天气潮湿。容易受潮。除潮不到位,一遇高温就有水气泡出来,产生了气泡。胶水本身也会出现气泡,只要在真空脱泡以后基本就没有泡了,点胶速度过快也会产生气泡。3、硫化这个问题相信是大多数老板关心的问题。也是最难解决的问题。因为产生硫化的因数太多了。也很难分析出在什么出现的,空气中到处都可能有硫。所以要避免硫化最好就是控制好封装工艺上的细节。胶水的密封性有直接个关系,信越的1018在抗硫化上表现是最好的。可以使用扫描电镜能谱分析仪来测4、胶水中毒。烤不干大多就是因为配比错误,或者是烤箱污染。或者是搅拌不均匀也会有这样的情况。只要一周清洁一次烤箱。分好专烤就可以解决。胶水本身也会有出现烤不干的情况,那就是过期变质,固化后表面不够光滑,这是因为胶遇到S、P等中毒引起,需清洗下烤箱、模具等系列工具。5、色温偏差荧光粉沉淀不一致。尤其是做高显指对胶水要求较高。胶水有个特性。每家的不同,正常在70度左右的时候粘度最低,很稀想水一样可以。如果荧光粉颗粒大小不一,大的沉淀快,小的不沉淀。这样做出来,就会有色温漂移。正常漂移1-2个色区。2835建议使用8-17um5050建议17-25um.也有客人直接做沉淀法。那样可以控制的很好。但是成本有点高。6、发黄烘烤出来表面发黄,支架没有发黄,那就可以断定是胶水的问题了。但是烘烤温度最好不要超过200度。7、固化后表面起皱,由收缩所引起胶中添加有溶剂型的硅树脂造成。8、出现界面层。采用同类物质想近的原理,改变硅胶与其的亲合力。环氧树脂成形性、耐热性、良好的机械强度及电器绝缘性。添加剂:为满足各种要求,需添加硬化剂、促进剂、抗燃剂、偶合剂、脱模剂、填充料、颜料、润滑剂失效模式:环氧树脂在短波照射或者长时间高温下会变黄。过回流焊时,环氧耐高温性能差导致环氧与衬底分离,产生光衰死灯等情况,所以应用在大功率照明上时寿命很短。环氧树脂因为价格低廉(和硅胶完全不是一个级别),而且储存、使用和可加工性也较硅胶优越,所以低功率LED和一些光感元器件依然使用环氧树脂封装硬度ShoreA和ShoreD的关系Shore音译称“肖”或“邵”邵尔A

33

38

42

45

49

52

55

57邵尔D

10

11

12

13

14

15

16

17邵尔A

60

62

64

66

68

70

72

73邵尔D

18

19

20

21

22

23

24

25邵尔A

75

76

77

79

80

81

82

83邵尔D

26

27

28

29

30

31

32

33邵尔A

84

85

86

87

88

88

89

90邵尔D

34

35

36

37

38

39

40

41邵尔A

91

91

92

92

93

94

94

95邵尔D

42

43

44

45

46

47

48

49邵尔A

95

96

96

97

97

97

98

98邵尔D

50

51

52

53

54

55

56

57邵尔A

98

99

99

99

100

100

100

100邵尔D

58

58

59

60

61

62

63

64邵尔A

100

100

100

100

100

100

100

100邵尔D

65

66

67

68

69

70

73

75固晶胶固晶胶需要注意的技术参数判断固晶胶好坏的主要参数固晶胶使用注意事项:5,荧光粉荧光粉的主要技术参数白光的几种实现形式1.蓝色LED芯片上涂敷能被蓝光激发的黄色荧光粉460nm波长的蓝光芯片上涂一层YAG荧光粉,利用蓝光LED激发荧光粉以产生与蓝光互补的555nm波长黄光,并将互补的黄光、蓝光混合得到白光。2.蓝色LED芯片上涂覆绿色和红色荧光粉芯片发出的蓝光与荧光粉发出的绿光和红光复合得到白光。3.紫光或紫外光LED芯片上涂敷三基色或多种颜色的荧光粉利用该芯片发射的长波紫外光(370nm-380nm)或紫光(380nm-410nm)来激发荧光粉而实现白光发射。失效模式:荧光粉的材质对白光LED的衰减影响很大。有加速老化白光LED的作用不同厂商的荧光粉对光衰的影响程度也不相同,这与荧光粉的原材料成分关系密切。选用最好材质的白光荧光粉,才有利于衰减控制。几种荧光粉的比较石榴石型氧化物:优点:亮度高,稳定性好,发射峰宽,成本低,应用广泛缺点:只能做出黄粉,激发波段窄,光谱中缺乏红光的成分,显色指数不高,很难超过85

专利:日亚化学垄断(YAG-04YAG-05)2.硅酸盐荧光粉:优点:激发波段宽,绿粉和橙粉较好缺点:发射峰窄,对湿度较敏感,缺乏好的红粉,不太耐高温,不适合做大功率LED,适合用在小功率LED专利:仍为丰田合成、日亚化学、欧司朗光电半导体等公司所拥有(G2762O5742)3.硫化物荧光粉:优点:激发波段宽红粉、绿粉较好,缺点:湿度敏感,制造过程中会产生污染,对人有害(属于淘汰的产品但市场有卖假粉的人为了赚取更多的利润,有可以用这种成份的荧光粉来充当好荧光粉)4.氮化物与氮氧化物荧光粉:优点:激发波段宽,温度稳定性好,非常稳定红粉、绿粉较好,蓝色到红色的全部色域缺点:制造成本较高,发射峰较窄专利:荷兰Eindhoven大学、日本

材料科学国家实验室(NIMS)、三菱化学公司、Ube工业与欧司朗光电半导体,北京宇极科技。(ER6436)荧光材料荧光粉涂覆方式荧光粉效率按能源之星标准之标准色温和公差额定相关色温2700K指标要求:2725+/-145额定相关色温3000K指标要求:3045+/-175额定相关色温3500K指标要求:3465+/-245额定相关色温4000K指标要求:3985+/-275额定相关色温4500K指标要求:4503+/-243额定相关色温5000K指标要求:5028+/-283额定相关色温5700K指标要求:5665+/-355额定相关色温6500K指标要求:6530+/-510荧光粉中参数D50是什么意思D代表粉体颗粒的直径,D50表示累计50%点的直径(或称50%通过粒径),D10表示累计10%点的直径,D50又称平均粒径或中位径,D(4,3)表示体积平均径,D(3,2)表示平面平均径。粉体颗粒大小称颗粒粒度。由于颗粒形状很复杂,通常有筛分粒度、沉降粒度、等效体积粒度、等效表面积粒度等几种表示方法。筛分粒度就是颗粒可以通过筛网的筛孔尺寸,以1英寸(25.4mm)宽度的筛网内的筛孔数表示,因而称之为“目数”。目前在国内外尚未有统一的粉体粒度技术标准。不同国家、不同行业对“目”的含义也难以统一表示粒度特性的几个关键指标:①D50:一个样品的累计粒度分布百分数达到50%时所对应的粒径。它的物理意义是粒径大于它的颗粒占50%,小于它的颗粒也占50%,D50也叫中位径或中值粒径。D50常用来表示粉体的平均粒度。②D97:一个样品的累计粒度分布数达到97%时所对应的粒径。它的物理意义是粒径小于它的的颗粒占97%。D97常用来表示粉体粗端的粒度指标。其它如D16、D90等参数的定义与物理意义与D97相似。荧光粉配色小结芯片波段越长,越容易做高显;荧光粉的激发效率越高,其用粉量就越低;当芯片的发射峰与荧光粉的激发峰最大程度重叠时,能够最大限度的发挥LED芯片和荧光粉的效率;使用荧光粉红粉和绿粉光谱越宽(波长差值),显色指数越大;红绿粉与硅胶的比例会影响到色坐标偏移,偏移方向在芯片波长与目标荧光体波长连线上;调配荧光粉的配比其实就是在调制混合需要的黄粉波长;当显指在70左右时,直接用单黄粉制作;当显指要求75左右时,建议用YAG黄粉+少量红粉搭配;当显指小于85时,建议用黄绿粉+红粉配,优点:光效高,容易控制;当显指大于90,建议用红粉+绿粉做,缺点是光效低,当显指大于90且要求光效高时,建议用三粉配制,缺点是一致性较差。LED失效模式失效原因

A封装失效:支架锈蚀、连接线断裂、封装材料(固晶胶、封装胶等)结构变化(退化)、荧光粉失效等引起的失效。B芯片失效:芯片材料缺陷、电极材料劣化、PN结结构损伤、芯片电极欧姆接触不良及芯片污染等引起的失效。C电应力失效:由过电流过电压冲击、过驱动、静电损伤等引起的失效。D热应力失效:结温过高、恶劣环境等引起的失效。

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论