高一数学:《1-5 全称量词与存在量词》课时练习02_第1页
高一数学:《1-5 全称量词与存在量词》课时练习02_第2页
高一数学:《1-5 全称量词与存在量词》课时练习02_第3页
高一数学:《1-5 全称量词与存在量词》课时练习02_第4页
高一数学:《1-5 全称量词与存在量词》课时练习02_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1.5全称量词与存在量词【本节明细表】知识点、方法题号全称量词命题与存在量词命题的辨析1,2,3,全称量词命题与存在量词命题的真假判断7,8,10全称量词命题与存在量词命题的否定4,8,9全称量词命题与存在量词命题的综合应用5,6,11,12,13基础巩固1.下列命题中是存在量词命题的是()A.所有的奇函数的图象都关于y轴对称B.正四棱柱都是平行六面体C.空间中不相交的两条直线相互平行D.存在大于等于9的实数【答案】D【解析】A,B,C选项中的命题都是全称量词命题,D选项中的命题是存在量词命题.2.“关于x的不等式f(x)>0有解”等价于()A.∃x0∈R,f(x0)>0B.∃x0∈R,f(x0)≤0C.∀x∈R,f(x)>0D.∀x∈R,f(x)≤0【答案】A【解析】该命题是存在量词命题,等价于“∃x0∈R,f(x0)>0”.3.下列命题中全称量词命题的个数为()①平行四边形的对角线互相平分;②梯形有两边平行;③存在一个菱形,它的四条边不相等.A.0B.1 C.2 D.3【答案】C【解析】①②都是全称量词命题,③为存在量词命题,故选C.4.命题“∃x∈R,使得x+1<0”的否定是()A.∀x∈R,均有x+1<0B.∀x∈R,均有x+1≥0C.∃x∈R,使得x+1≥0D.∃x∈R,使得x+1=0【答案】B【解析】命题“∃x∈R,使得x+1<0”的否定是∀x∈R,均有x+1≥0,故选B.5.已知命题p:∀x>3,x>m成立,则实数m的取值范围是()A.m≤3 B.m≥3 C.m<3 D.m>3【答案】A【解析】对任意x>3,x>m恒成立,即大于3的数恒大于m,所以m≤3.6.命题:“对任意k>0,方程x2+x-k=0有实根”的否定是.

【答案】存在k0>0,使得方程x2+x-k0=0无实根【解析】全称量词命题的否定是存在量词命题,故原命题的否定是“存在k0>0,使得方程x2+x-k0=0无实根”.7.下列存在量词命题是真命题是.(填序号)

①有些不相似的三角形面积相等;②存在实数x0,使x02+x【答案】①③④【解析】①是真命题,只要找出等底等高的两个三角形,面积就相等,但不一定相似;②中对任意x∈R,x2+x+1=x+122+34>0,所以不存在实数x8.写出下列命题的否定并判断真假:(1)所有末位数字是0或5的整数都能被5整除;(2)某些梯形的对角线互相平分;(3)被8整除的数能被4整除.【答案】见解析【解析】(1)命题的否定是:存在末位数字是0或5的整数不能被5整除,是假命题.(2)命题的否定:任意梯形的对角线都不互相平分,是真命题.(3)命题的否定:存在一个数能被8整除,但不能被4整除,是假命题.能力提升9.命题“∀x∈R,∃n0∈N*,使得n0≥2x+1”的否定形式是()A.∀x∈R,∃n0∈N*,使得n0<2x+1B.∀x∈R,∀n0∈N*,使得n0<2x+1C.∃x0∈R,∃n∈N*,使得n<2x0+1D.∃x0∈R,∀n∈N*,使得n<2x0+1【答案】D【解析】由题意可知,全称量词命题“∀x∈R,∃n0∈N*,使得n0≥2x+1”的否定形式为存在量词命题“∃x0∈R,∀n∈N*,使得n<2x0+1”,故选D.10.已知下列四个命题:①∀x∈R,2x2-3x+4>0;②∀x∈{1,-1,0},2x+1>0;③∃x0∈N,使x02≤x0;④∃x0∈N*A.1 B.2 C.3 D.4【答案】C【解析】②中,当x=-1时,2x+1<0,所以②为假命题,其它为真命题。11.若命题“∃x∈R,2x2-3ax+9<0”为假命题,则实数a的取值范围是.

【答案】-22≤a≤22【解析】由题意可知,2x2-3ax+9≥0对一切x∈R恒成立,因此(-3a)2-72≤0,解得-22≤a≤22.12.对任意实数x,不等式2x>m(x2+1)恒成立,求实数m的取值范围.【答案】见解析【解析】不等式2x>m(x2+1)对任意x都成立,即不等式mx2-2x+m<0恒成立.(1)当m=0时,不等式化为-2x<0,显然不恒成立,不合题意.(2)当m≠0时,要使mx2-2x+m<0恒成立,则m综上可知,所求实数m的取值范围为m<-1.素养达成13.已知命题p:∀x∈R,x2+(a-1)x+1≥0成立,命题q:∃x0∈R,ax02-2ax【答案】见解析【解析】因为命题p:∀x∈R,x2+(a-1)x+1≥0是假命题,所以命题p:∃x0∈R,x02+(a-1)x则Δ=(a-1)2-4>0,即(a-1)2>4,故a-1<-2或a-1>2,即a<-1或a>3.因为命题q:∃x0∈R,ax02-2ax0-3>0不成立,所以

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论