




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设实数满足,函数的最小值为()A. B.C. D.62.为了得到函数的图象,只需将函数上所有的点()A.向左平移个单位长度 B.向右平移个单位长度C.向左平移个单位长度 D.向右平移个单位长度3.下表是某次测量中两个变量的一组数据,若将表示为关于的函数,则最可能的函数模型是234567890.631.011.261.461.631.771.891.99A.一次函数模型 B.二次函数模型C.指数函数模型 D.对数函数模型4.方程的所有实数根组成的集合为()A. B.C. D.5.已知定义域为R的偶函数在上是减函数,且,则不等式的解集为()A. B.C. D.6.某工厂产生的废气经过滤后排放,过滤过程中废气的污染物含量P(单位:)与时间t(单位:h)间的关系为,其中,k是常数.已知当时,污染物含量降为过滤前的,那么()A. B.C. D.7.已知直三棱柱中,,,,则异面直线与所成角的余弦值为A. B.C. D.8.已知函数满足对任意实数,都有成立,则的取值范围是()A B.C. D.9.命题“”的否定是:()A. B.C. D.10.已知集合,集合,则()A.{-1,0,1} B.{1,2}C.{-1,0,1,2} D.{0,1,2}二、填空题:本大题共6小题,每小题5分,共30分。11.已知指数函数的解析式为,则函数的零点为_________12.关于的不等式的解集是________13.已知函数是R上的减函数,则实数a的取值范围为_______14.tan22°+tan23°+tan22°tan23°=_______15.已知函数在上单调递减,则实数的取值范围是______.16.将函数的图象先向右平移个单位长度,得到函数________________的图象,再把图象上各点横坐标缩短到原来的(纵坐标不变),得到函数________________的图象三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设函数的定义域为,函数的定义域为.(1)求;(2)若,且函数在上递减,求的取值范围.18.已知直线(1)求证:直线过定点(2)求过(1)的定点且垂直于直线直线方程.19.(1)计算:;(2)已知,,求,的值.20.(1)设,求与的夹角;(2)设且与的夹角为,求的值.21.已知全集,集合,.(1)当时,求;(2)若,且,求的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】将函数变形为,再根据基本不等式求解即可得答案.详解】解:由题意,所以,所以,当且仅当,即时等号成立,所以函数的最小值为.故选:A【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方2、A【解析】根据函数图象的平移变换即可得到答案.【详解】选项A:把函数上所有的点向左平移个单位长度可得的图象,选项A正确;选项B:把函数上所有的点向右平移个单位长度可得的图象,选项B错误;选项C:把函数上所有的点向左平移个单位长度可得的图象,选项C错误;选项D:把函数上所有的点向右平移个单位长度可得的图象,选项D错误;故选:A.3、D【解析】对于,由于均匀增加,而值不是均匀递增,不是一次函数模型;对于,由于该函数是单调递增,不是二次函数模型;对于,过不是指数函数模型,故选D.4、C【解析】首先求出方程的解,再根据集合的表示方法判断即可;【详解】解:由,解得或,所以方程的所有实数根组成的集合为;故选:C5、A【解析】根据偶函数的性质可得在上是增函数,且.由此将不等式转化为来求解得不等式的解集.【详解】因为偶函数在上是减函数,所以在上是增函数,由题意知:不等式等价于,即,即或,解得:或.故选:A【点睛】本小题主要考查函数的奇偶性以及单调性,考查对数不等式的解法,属于中档题.6、C【解析】根据题意列出指数式方程,利用指数与对数运算公式求出的值.【详解】由题意得:,即,两边取对数,,解得:.故选:C7、C【解析】如图所示,补成直四棱柱,则所求角为,易得,因此,故选C平移法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面问题化归为共面问题来解决,具体步骤如下:①平移:平移异面直线中的一条或两条,作出异面直线所成的角;②认定:证明作出的角就是所求异面直线所成的角;③计算:求该角的值,常利用解三角形;④取舍:由异面直线所成的角的取值范围是,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.求异面直线所成的角要特别注意异面直线之间所成角的范围8、C【解析】易知函数在R上递增,由求解.【详解】因为函数满足对任意实数,都有成立,所以函数在R上递增,所以,解得,故选:C9、A【解析】由特称命题的否定是全称命题,可得出答案.【详解】根据特称命题的否定是全称命题,可知命题“”的否定是“”.故选:A.10、B【解析】由交集定义求得结果.【详解】由交集定义知故选:B二、填空题:本大题共6小题,每小题5分,共30分。11、1【解析】解方程可得【详解】由得,故答案为:112、【解析】不等式,可变形为:,所以.即,解得或.故答案为.13、【解析】由已知结合分段函数的性质及一次函数的性质,列出关于a的不等式,解不等式组即可得解.【详解】因为函数是R上的减函数所以需满足,解得,即所以实数a的取值范围为故答案为:14、1【解析】解:因为tan22°+tan23°+tan22°tan23°=tan(22°+23°)(1-tan22°tan23°)+tan22°tan23°=tan45°=115、【解析】根据分段函数的单调性,可知每段函数的单调性,以及分界点处的函数的的大小关系,即可列式求解.【详解】因为分段函数在上单调递减,所以每段都单调递减,即,并且在分界点处需满足,即,解得:.故答案为:16、①.②.【解析】根据三角函数的图象变换可得变换后函数的解析式.【详解】由三角函数的图象变换可知,函数的图象先向右平移可得,再把图象上各点横坐标缩短到原来的(纵坐标不变)可得,故答案为:;三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)先求出集合,,然后由补集和并集的定义求解即可;(2)先利用交集求出集合,然后利用二次函数的单调性分析求解即可【详解】解:(1)由得,∴,由得,∴,∴,∴.(2)∵,,∴.由在上递减,得,即,∴.18、(1)见解析;(2).【解析】⑴将直线化为,解不等式组即可得证;⑵由(1)知定点为,结合题目条件计算得直线方程解析:(1)根据题意将直线化为的解得,所以直线过定点(2)由(1)知定点为,设直线的斜率为k,且直线与垂直,所以,所以直线的方程为19、(1);(2)【解析】(1)根据指数运算与对数运算的法则计算即可;(2)先根据指对数运算得,进而,再将其转化为求解即可.【详解】解:(1)原式==(2)∴,,化为:,,解得∴20、(1);(2)61.【解析】(1)由已知中12,9,,代入平面向量的夹角公式,即可求出θ的余弦值,结合0°≤θ≤180°,即可得到答案(2)利用数量积运算法则即可得出;【详解】(1)∵12,9,,∴cosθ又∵0°≤θ≤180°
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 七年级英语上册 Module 9 People and places Unit 2 They're waiting for buses or trains教学设计 (新版)外研版
- 讲好我的教育故事
- 512 国际护士节主题汇报
- 4古诗三首山行 (教学设计)2024-2025学年统编版语文三年级上册
- D便秘的用药指导课件
- 2023七年级数学下册 第7章 一元一次不等式与不等式组7.3 一元一次不等式组教学设计 (新版)沪科版
- 2023二年级数学上册 五 厘米和米第3课时 认识米教学设计 苏教版
- 7《循环应用与函数初识》核心素养目标教学设计、教材分析与教学反思滇人版初中信息技术八年级第12册
- Unit 7 Lesson 5 Grammar in Use 教学设计 2024-2025学年仁爱科普版(2024)七年级英语下册
- 《制作标志牌-三角形面积》(教学设计)-2024-2025学年青岛版(五四学制)四年级数学下册
- MOOC 国际商务-暨南大学 中国大学慕课答案
- 国家开放大学2024年《知识产权法》形考任务1-4答案
- 小学生船舶知识课件
- 2023图解商用密码应用安全性评估
- GB/T 18910.41-2024液晶显示器件第4-1部分:彩色矩阵液晶显示模块基本额定值和特性
- (高清版)DZT 0004-2015 重力调查技术规范(150 000)
- 新能源技术在国防军工领域的应用与研究
- 高中英语语法课件-状语从句(共40张)
- 粤教粤科版科学六年级下册全册单元检测卷 含答案
- 物种起源少儿彩绘版
- 人才培养方案企业调研
评论
0/150
提交评论