脑神经系统-中枢神经可塑性课件_第1页
脑神经系统-中枢神经可塑性课件_第2页
脑神经系统-中枢神经可塑性课件_第3页
脑神经系统-中枢神经可塑性课件_第4页
脑神经系统-中枢神经可塑性课件_第5页
已阅读5页,还剩24页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

中枢神经的可塑性

1

中枢神经系可塑性概述

2

成年人脑新生神经元

3

神经元的凋亡

4

成年脑神经的再生5中枢神经在生的研究与焦点

中枢神经可塑性概述 一般认为主动适应和反映外界环境各种变化,神经系统能发生结构和功能的改变,并维持一定时间的变化称为神经可塑性(plasticity),它包括了生理性和病理性两个方面。学习和记忆就是中枢神经脑可塑性的典型例证,揭示学习和记忆的奥秘是当代自然科学面临最大挑战之一。神经系统结构和功能的可塑性是神经系统的重要特征。各种可塑性的变化可在神经发育期,成年期和老年期出现。生理和病理条件下均可能出现。

突触传递的可塑性

生物遗传和后天环境因素决定中枢神经系的结构复杂程度。同一种动物可由于接受较多环境信息刺激,其神经系发育程度,突触数量,树突长度和分支及胶质细胞数量等远胜过贫乏环境生长的动物。后天的学习,训练等因素能影响改变神经和突触的组织结构和生理效能。 成年神经系尽管不具备分裂增殖力,但却能产生新的树突棘,形成新的突触连接能力,主要是中枢神经可塑性的物质基础。 突触可塑性的证据是英国神经生物学家Bliss证明的。对家兔的海马传入N纤维给予短暂高频刺激,可诱发增大的兴奋性突触后电位,潜伏期明显缩短,使海马结构的突触传递效能增强。这种增强现象可以持续数小时至数周,称为突触传递长时程增强(longtermpotentiation,LTP)。LTP的发现使突触可塑性和学习,记忆实验研究进入重要里程碑。学习和记忆实际上是神经学的一种功能活动。其基础是神经元的连结,即突触在形态及功能上的改变。

成年体损伤后的可塑性 在神经损伤反应中,既有已存的突触脱失,又有神经出芽(sprouting)形成新的突触连接。神经损伤还可以跨突触出现远离部位的损伤。如周围神经元的损伤可引起中枢相应皮质内突触结构变化和神经回路的改建,一侧神经损伤可引发对侧相应部位突触的重排或增减。 大脑皮质层具有重组(Reorganization)能力。由Merzenich等人对猴大脑皮层电生理研究证实,切断结扎正中神经和截指可引起大脑相应感觉区皮层区的重组。受损支配的区域(沉寂区)可以被完全或部分代偿。在损伤区的周围发生了重组,提示了皮层的重组能力可能是脑损伤后功能恢复的神经基础。 神经系统损伤后的再生是可塑性的另一种形式。脊髓损伤后,可塑性的变化表现形式为附近未受损伤神经元轴突的侧枝出芽(lateralsprouting)最先发生;若受损神经元仍存活时,可出现再生性出芽(regeneratingsprouting)。在发育神经元轴突侧枝受损伤时,其正常的其它侧枝可发新芽代偿性出芽(compensatorysprouting)。

成年人脑中的新生神经元 几乎所有的人体组织能够在一生中某种程度上修复自身。如皮肤划伤后,正常情况下几天之内将愈合。骨折的病人,断骨亦将逐渐愈合。这是由于“干细胞”的作用结果。干细胞除外自身复制,也能产生许多不同种类的其它细胞,骨髓中的干细胞能产生所有血液中的各种细胞。红细胞每分钟可生成25×1012个。 直到20世纪80年代,全世界的科学家还坚定不移地相信高等脊髓动物脑干不可能有神经元的再生。因为脑中缺乏再生神经元的干细胞。直到1997年,EberhardFuchs和ElizaberthGould研究小组发现类似灵长类的树句的海马中有神经元的再生。98年又在狨猴中发现同一现象存在。这些发现使他们认为成年人脑中完全有可能存在神经元再生的现象。但却无法在人脑中直接实验证实。ErikssonDoc.从患有舌癌和喉癌晚期病人(溴脱氧尿苷Brdu示踪的分裂细胞)脑中,第一次证实了人类成体脑中存在新生的神经元。 产生新生神经元的干细胞位于海马齿状回沟门的边界上,它们在那里不断分裂,产生与双亲实验完全一样的后代。但许多新生的神经元分裂之后即死亡了。一些则迁移到周围粒细胞层深处,一些迁移到嗅球中。99年美国Princeton大学的ElizaberthCould在Since发表了成年恒河猴脑中进入新皮层的新生NC起源于室管膜下区(SubrantricularzoneSVZ)并通过皮层迁移到新皮层,在那里与周围神经元形成联系,成为发育完善的功能神经元。(SVZ→产生神经干细胞DeatschF1997,Neuroscince,Johansson1999,Cell.)

这一最新发现证明了人中枢神经系统具有强大的可塑性。它使我们未来能否利用和诱导这种可塑性成为可能。诱发激活处于静止状态的神经干细胞,并使其迁移到特定的区域发育成为相应的神经元,为治疗脑损伤或神经元疾病带来了曙光。

神经凋亡的主要原因并不是这些神经元自身有缺陷,死亡的主要原因是神经元和靶细胞群体数目必须匹配。它们之间存在着调节这种比例的机制。发育过程中,过量神经元的产生,可能是进化上选择新通路的条件。实验证明,特定神经元群的靶组织存在其神经元迁移到达之前被移走,则85%-90%神经元将会死亡,在正常时则仅50%左右神经元会死亡。细胞凋亡和死亡基因有关:主要死亡的基因为ced-3和ced-4,存活的基因为ced-9,它能抑制ced-4,保护神经元及其它细胞的存活。它们可在个体发育过程中自动调控细胞的存活。细胞死亡受体和死亡配基:细胞死亡的受体主要是肿瘤坏死因子TNF/NGF受体家族成员,如TNFR1,Apo-1/P75(NTR),DR-3/Apo-3,DR-4和DR-5等。它们通过其脑外结构域产生相应的死亡配基因子结合,触发死亡受体胞内结构域产生死亡信号,传给胞质信号分子导致细胞死亡。P75与NGF结合后,可诱导细胞凋亡产生,但NGF抗体预先处理后,便可阻止细胞凋亡出现。这说明神经系统在内源性的NGF与死亡受体结合后,能导致神经细胞凋亡。

脊椎动物成体脑中神经元的再生以往认为,高等脊椎动物的CNS在发育到胚胎期即已告完成。成年的CNS仅存有限的神经突起和神经网络的补偿性再生和修复功能。但20世纪80年代中期,美国洛克菲勒大学的Goldmann和Nottebdlm首次证明了成体鸡禽金丝雀脑中存在神经元再生的现象。他第一次否定了高等脊椎动物脑中不会有神经元再生的结论。对成体CNS的可塑性有了新的认识,同时推动了对哺乳动物大脑皮层神经元的起源迁移和分化过程的研究。它是一种揭示高等哺乳类CNS可塑性机制研究的极好的动物模型。应用[3H]放射自显影和荧光逆行神经示踪技术证明,发声神经核团(HVC)中向RA投射的神经元产生具有明显季节的规律。金丝雀在9-12月,其脑中新的神经元数量逐渐增加,次年1月其数量不再变化直到繁殖季节结束为止。统计表明:新增加的神经元可达50-75%,再新生的神经元80%发生在9月中旬。该现象表明:繁殖季节过后,金丝雀声音结构发生变异,不稳定时,恰是大量RA投射神经元加入到HVC发声神经核团的时间,它们参加到原有的发声神经核网络中,正是金丝雀鸣啭学习的必须物质保证。当到第二个春季繁殖季节时,新的神经元已和原有的神经元形成新的功能联系,因而新的神经元不再增加。最近美国的Goge和Eriksson在世界上首次报道了他们惊人的发现,在五位年龄57-72病人(舌癌及喉癌)脑中,发现了新生的神经元(Brud是一种溴脱氧尿苷示踪剂)。在海马的齿状回,新生神经元的密度高达100-300个/mm3,其中一个病人的脑中新生神经元存活了781天。证明了人脑中损伤及死亡神经元的替换有了突破性进展。不仅对神经科学的基础理论研究还是临床医学应用前景都具有重大意义。

中枢神经再生研究的历史和焦点中枢神经损伤后再生的研究已将近一个世纪。目前虽未根本解决,但已取得了举世瞩目的进展。从近80年对中枢神经损伤再生研究历史看,大致可分为三个阶段。第一阶段:形态和组织学水平时期20世纪20年代—70年代为中枢神经损伤与再生的研究启蒙时期,以形态和病理组织学研究为主。

中枢神经系无Schwann细胞两种观点疤痕形成阻碍神经纤维的通过

58年LiaandChambers发现侧枝生芽现象两个发现69年Raisman的有名神经回路网的可塑实验这些实验结果说明了多年一些不能解释的临床现象。如脑血管瘤导致的偏瘫病人,经过一定时间,机能上有一定程度的恢复;为缓解或消除顽痛,行三叉神经脊束切断术或脊髓侧索切断术,一段时期后疼痛复发等症。

第二阶段:细胞水平及分子水平时期

从80年代来,在神经系统发现多种与神经生长、发育有关的因子,称之为神经营养因子(neurotroplicfactor,NTFS),指能支持神经元存活,促进其生长,分化,维持功能,受损时可保护存活促进再生的化学因子,包括NGF,CNTF,BDNF,NT3,NT4,NT5/6,GDNF等家族。从52年,LemMonfalcini发现NGF,开创了神经因子发现先例,它仍对神经元的保护作用引起了人们极大兴趣。如GDNF可挽救发育中中枢神经元的自然“编程死亡”,促进神经元存活。挽救损伤后运动神经元的大量丧失。NGF促进神经断端轴突的再生,局部用BDNF可防止大鼠坐骨神经元的死亡;NT3可诱导损伤的皮质脊髓束侧枝生长出芽,挽救损伤的clarke神经元存活,阻止断离的脊髓神经元萎缩等。我们的研究亦证实了中枢脊髓受损后,内源性的NGF,BDNF,NT3和NT4均有不同程度的增加,提示中枢神经的受损修复与上述NTFS因子密切相关。可以预期随着NTFS的深入广泛研究,NTFS的获取和给药途径的改进,中枢神经损伤修复将会得到极大的改善。

第三阶段为什么周围神经损伤可以再生,中枢神经损伤后不能再生?为什么下运动神经元损伤可以再生,上运动神经元损伤后不能再生?这两个矛盾是解开中枢再生之迷的线索。是疤痕妨碍纤维再生,还是中枢神经的内环境有什么特殊抑制性物质存在。81年David和Aguayo发现了成年动物神经元的轴突可以在周围神经移植物中再生,在中枢却不能。后Schwab证实了中枢神经内少突胶质细胞产生鞘质抑制因子相关蛋白。如MAG(myeliuassociatedglycoproteintenascin-rtenascin-c,ar

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论