版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.一个多面体的三视图如图所示,则该多面体的表面积为()A.21+ B.18+C.21 D.182.已知角的终边与单位圆的交点为,则()A. B.C. D.3.函数y=ax﹣2+1(a>0且a≠1)的图象必经过点A.(0,1) B.(1,1)C.(2,0) D.(2,2)4.中国5G技术领先世界,5G技术的数学原理之一便是著名的香农公式:.它表示:在受噪声干扰的信道中,最大信息传递速度C取决于信道带宽W,信道内信号的平均功率S,信道内部的高斯噪声功率N的大小,其中叫做信噪比.当信噪比较大时,公式中真数中的1可以忽略不计.按照香农公式,若不改变带宽W,而将信噪比从1000提升至8000,则C大约增加了()()A.10% B.30%C.60% D.90%5.已知是非零向量且满足,,则与的夹角是()A. B.C. D.6.已知函数为偶函数,且在上单调递增,,则不等式的解集为()A. B.C. D.7.若集合,则()A. B.C. D.8.形如的函数因其图像类似于汉字中的“囧”字,故我们把其生动地称为“囧函数”.若函数有最小值,则“囧函数”与函数的图像交点个数为()A.1 B.2C.4 D.69.今有一组实验数据如下:x23456y1.52.012.985.028.98现准备用下列函数中的一个近似地表示这些数据所满足的规律,其中最接近的一个是()A. B.C. D.10.已知,,三点,点使直线,且,则点D的坐标是(
)A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若函数f(x)=的定义域为R,则实数a的取值范围是:_____________.12.已知关于不等式的解集为,则的最小值是___________.13.直线3x+2y+5=0在x轴上的截距为_____.14.函数的定义域是__________.15.已知函数是定义在的偶函数,且在区间上单调递减,若实数满足,则实数的取值范围是__________16.已知幂函数(为常数)的图像经过点,则__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知圆过三个点.(1)求圆的方程;(2)过原点的动直线与圆相交于不同的两点,求线段的中点的轨迹.18.已知函数=(1)判断的奇偶性;(2)求在的值域19.已知函数.求函数的值域20.设函数(且)(1)若函数存在零点,求实数的最小值;(2)若函数有两个零点分别是,且对于任意的时恒成立,求实数的取值集合.21.已知圆经过,两点,且圆心在直线:上.(Ⅰ)求圆的方程;(Ⅱ)若点在直线:上,过点作圆的一条切线,为切点,求切线长的最小值;(Ⅲ)已知点为,若在直线:上存在定点(不同于点),满足对于圆上任意一点,都有为一定值,求所有满足条件点的坐标.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】由题意,该多面体的直观图是一个正方体挖去左下角三棱锥和右上角三棱锥,如下图,则多面体的表面积.故选A.考点:多面体的三视图与表面积.2、A【解析】利用三角函数的定义得出和的值,由此可计算出的值.【详解】由三角函数的定义得,,因此,.故选:A.【点睛】本题考查三角函数的定义,考查计算能力,属于基础题.3、D【解析】根据a0=1(a≠0)时恒成立,我们令函数y=ax﹣2+1解析式中的指数部分为0,即可得到函数y=ax﹣2+1(a>0且a≠1)的图象恒过点的坐标解:∵当X=2时y=ax﹣2+1=2恒成立故函数y=ax﹣2+1(a>0且a≠1)的图象必经过点(2,2)故选D考点:指数函数的单调性与特殊点4、B【解析】根据所给公式、及对数的运算法则代入计算可得;【详解】解:当时,,当时,,∴,∴约增加了30%.故选:B5、B【解析】利用向量垂直求得,代入夹角公式即可.【详解】设的夹角为;因为,,所以,则,则故选:B【点睛】向量数量积的运算主要掌握两点:一是数量积的基本公式;二是向量的平方等于向量模的平方.6、A【解析】由题可得函数在上单调递减,,且,再利用函数单调性即得.【详解】因为函数为偶函数且在上单调逆增,,所以函数在上单调递减,,且,所以,所以,解得或,即的取值范围是.故选:A.7、B【解析】集合、与集合之间的关系用或,元素0与集合之间的关系用或,ACD选项都使用错误。【详解】,只有B选项的表示方法是正确的,故选:B。【点睛】本题考查了元素与集合、集合与集合之间的关系的表示方法,注意集合与集合之间的关系是子集(包含于),元素与集合之间的关系是属于或不属于。本题属于基础题。8、C【解析】令,根据函数有最小值,可得,由此可画出“囧函数”与函数在同一坐标系内的图象,由图象分析可得结果.【详解】令,则函数有最小值∵,∴当函数是增函数时,在上有最小值,∴当函数是减函数时,在上无最小值,∴.此时“囧函数”与函数在同一坐标系内的图象如图所示,由图象可知,它们的图象的交点个数为4.【点睛】本题考查对数函数的性质和函数图象的应用,考查学生画图能力和数形结合的思想运用,属中档题.9、B【解析】根据表格中的数据,作出散点图,结合选项和函数的单调性,逐项判定,即可求解.【详解】根据表格中的数据,作出散点图,如图所示,根据散点图可知,随着的增大,的值增大,并且增长速度越来越快,结合选项:函数增长速度越来越缓慢,不符合题意;函数增长速度越来越快,符合题意;函数,增长速度不变,不符合题意;而函数,当时,可得;当时,可得,此时与真实数据误差较大,所以最接近的一个函数是.故选:B.10、D【解析】先设点D的坐标,由题中条件,且,建立D点横纵坐标的方程,解方程即可求出结果.【详解】设点,则由题意可得:,解得,所以D点坐标为.【点睛】本题主要考查平面向量,属于基础题型.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据题意,有在R上恒成立,则,即可得解.【详解】若函数f(x)=的定义域为R,则在R上恒成立,则,解得:,故答案为:.12、【解析】由题知,进而根据基本不等式求解即可.【详解】解:因为关于的不等式的解集为,所以是方程的实数根,所以,因为,所以,当且仅当,即时等号成立,所以的最小值是故答案为:13、【解析】直接令,即可求出【详解】解:对直线令,得可得直线在轴上截距是,故答案:【点睛】本题主要考查截距的定义,需要熟练掌握,属于基础题14、{|且}【解析】根据函数,由求解.【详解】因为函数,所以,解得,所以函数的定义域是{|且},故答案为:{|且}15、【解析】先利用偶函数的性质将不等式化简为,再利用函数在上的单调性即可转化为,然后求得的范围.【详解】因为为R上偶函数,则,所以,所以,即,因为为上的减函数,,所以,解得,所以,的范围为.【点睛】1.函数值不等式的求法:(1)利用函数的奇偶性、特殊点函数值等性质将函数值不等式转化为与大小比较的形式:;(2)利用函数单调性将转化为自变量大小比较的形式,再求解不等式即可.
偶函数的性质:;奇函数性质:;
若在D上为增函数,对于任意,都有;若在D上为减函数,对于任意,都有.16、3【解析】设,依题意有,故.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)设圆的方程为,列出方程组,求得的值,即可求得圆的方程;(2)根据题意得到,得出在以为直径的圆上,得到以为直径的圆的方程,再联立两圆的方程组,求得交点坐标,即可得到点的轨迹方程.【小问1详解】解:设圆的方程为,因为圆过三个点,可得,解得,所以圆的方程为,即.【小问2详解】解:因为为线段的中点,且,所以在以为直径的圆上,以为直径的圆的方程为,联立方程组,解得或,所以点的轨迹方程为.18、(1)奇函数(2)【解析】(1)由奇偶性的定义判断(2)由对数函数性质求解【小问1详解】,则,的定义域为,,故是奇函数【小问2详解】,当时,,故,即在的值域为19、【解析】将化为,分和分别应用均值不等式可得答案.【详解】解:,当时,,当且仅当,即时取等号;当时,,当且仅当,即时取等号综上所述,的值域为20、(1);(2)【解析】(1)由题意列出不等式组,令,求出对称轴,若在区间上有解,则解不等式即可求得k的范围;(2)由韦达定理计算得,利用指数函数单调性解不等式,化简得,令,求出函数在区间上的值域从而求得m的取值范围.【详解】(1)由题意知有解,则有解,①③成立时,②显然成立,因此令,对称轴为:当时,在区间上单调递减,在区间上单调递增,因此若在区间上有解,则,解得,又,则,k得最小值为;(2)由题意知是方程的两根,则,,联立解得,解得,所以在定义域内单调递减,由可得对任意的恒成立,化简得,令,,对成立,所以在区间上单调递减,,所以【点睛】本题考查函数与方程,二次函数的图像与性质,考查韦达定理,求解指数型不等式,导数证明不等式,属于较难题.21、(Ⅰ);(Ⅱ);(Ⅲ).【解析】分析】(Ⅰ)根据题意,设出圆的标准方程,代入条件,列方程求解即可;(Ⅱ)由勾股定理得,所以要求的最小值,即求的最小值,而最小时,垂直于直线,据此可得结论;(Ⅲ)设,,列出相应等式化简,再利用点的任意性,列出方程组求解即可.【详解】(Ⅰ)设圆的方程为,根据题意有,解得,所以圆的方程为;(Ⅱ)由勾股定理得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 劳动仲裁调解协议书7篇
- 商业合伙人的协议书
- 传统民间工艺品-捏面人简介
- (参考模板)三通项目立项报告
- 第三次月考试卷-A4
- 重庆2020-2024年中考英语5年真题回-教师版-专题08 阅读理解之记叙文
- 电能表安06课件讲解
- 2023年抗甲状腺药项目融资计划书
- 国华电力危险化学品安全管理培训课件
- PLC控制技术试题库(附参考答案)
- 早期复极综合征的再认识课件
- 李商隐诗歌《锦瑟》课件
- 世界文化遗产-乐山大佛课件
- 2022小学一年级数学活用从不同角度解决问题测试卷(一)含答案
- 博尔赫斯简介课件
- 2021年山东交投矿业有限公司招聘笔试试题及答案解析
- 施工单位资料检查内容
- 大气课设-酸洗废气净化系统
- 学校校庆等大型活动安全应急预案
- 检测公司检验检测工作控制程序
- 高血压病例优秀PPT课件
评论
0/150
提交评论