版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
24.4一元二次方程的应用(3)(其他问题)24.4一元二次方程的应用(3)1请同学们回忆并回答与利润相关的知识:利润率=________,利润=_____-进价。售价=标价×折扣,9折要乘以90%或0.9或,那么x折呢?某商品进价800元,标价1200元,8折销售,利润是_____,利润率是_____。请同学们回忆并回答与利润相关的知识:某商品进价800元,标价2
例:新华商场销售某种冰箱,每台进货价为2500元。调查发现,当销售价为2900元时,平均每天能售出8台;而当销售价每降低50元时,平均每天就能多售出4台。商场要想使这种冰箱的销售利润平均每天达到5000元,每台冰箱的定价应为多少元?例:新华商场销售某种冰箱,每台进货价为2500元。调查发现3如果设每台冰箱降价x元,那么每台冰箱的定价就是————————————元,每台冰箱的销售利润为————————————元,平均每天销售冰箱的数量为————————————台。这样就可以列出一个方程,从而使问题得到解决。
分析:本题的主要等量关系:每台冰箱的销售利润×平均每天销售冰箱的数量=5000元(2900-x-2500)(2900-x)也可以用列表的方法进行分析:(如下表)如果设每台冰箱降价x元,那么每台冰箱的定价分析:本题的主要等4每天的销售量/台每台的销售利润/元总销售利润/元降价前降价后82900-2500(2900-2500)×82900-x-25005000每天的销售量/台每台的销售利润/元总销售利润/元降价前降价后5思考:本题若设定价为x元,应怎么列方程?思考:本题若设定价为x元,应怎么列方程?6做一做某商场将进货价为30元的台灯以40元售出,平均每月能售出600个。调查发现,售价在40元至60元范围内,这种台灯的售价每上涨1元,其销售量就将减少10个。为了实现平均每月10000元的销售利润,这种台灯的售价应定为多少?这时应进台灯多少个?50元,500个做一做某商场将进货价为30元的台灯以40元售出,平均每月能售7议一议利用方程解决实际问题的关键是什么?寻找等量关系议一议寻找等量关系8练习某批发市场礼品柜台春节期间购进大量贺年片,一种贺年片平均每天能售出500张,每张盈利0.3元.为了尽快减少库存,摊主决定采取适当的降价措施.调查发现,如果这种贺年卡的售价每降价0.05元,那么平均每天可多售出200张.摊主要想平均每天盈利180元,每张贺年片应降价多少元?练习某批发市场礼品柜台春节期间购进大量贺年片,一种贺年片平均9某种服装,平均每天可销售20件,每件盈利44元.在每件降价幅度不超过10元的情况下,若每件降价1元,则每天可多售5件.如果每天盈利1600元,每件应降价多少元?(不合题意,舍去)答:每件服装应降价4元.某种服装,平均每天可销售20件,每件盈利44元.在每件降价幅10一个班每两个人都互相握手一次,有人统计一共握了3003次手,请问这班的人数是多少?一个班每两个人都互相握手一次,有人统计一共握了3003次手,11某花圃用花盆培育某种花苗,经过试验发现每盆的盈利与每盆的株数构成一定的关系.每盆植入3株时,平均单株盈利3元;以同样的栽培条件,若每盆增加1株,平均单株盈利就减少0.5元.要使每盆的盈利达到10元,每盆应该植多少株?(x+3)(3-0.5x)=10解这个方程,得:x1=1,x2=2答:要使每盆的盈利达到10元,每盆应植入4株或5株.某花圃用花盆培育某种花苗,经过试验发现每盆的盈利与每盆的株数12一个农业合作社以64000元的成本收获了某种农场品80t,目前可以以1200元/t的价格出售。如果储藏起来,每星期会损失2t,且每星期需支付各种费用1600元,但同时每星期每吨的价格将上涨200元。那么,储藏多少个星期出售这批农场品可获利122000元?解:设储藏x个星期出售这批农场品可获利122000元,根据题意,得(80-2x)(1200+200x)-1600x-64000=122000整理,得x2-30x+225=0解得x1=x2=15所以,储藏15个星期出售这批农场品可获利122000元。一个农业合作社以64000元的成本收获了某种农场品80t,目13某公司今年10月的营业额为2500万元,按计划第四季度的总营业额要达到9100万元,求该公司11,12两个月营业额的月均增长率。解:设该公司11,12两个月营业额的月均增长率为x,根据题意,得2500+2500(1+x)+2500(1+x)2=9100整理,得x2+3x-0.64=0解得x1=0.2,x2=-3.2(不合题意,舍去)所以,设该公司11,12两个月营业额的月均增长率为20%。某公司今年10月的营业额为2500万元,按计划第四季度的总营14列方程解应用题的一般步骤是:1.审:审清题意:已知什么,求什么?已知,未知之间有什么关系?2.设:设未知数,语句要完整,有单位(统一)的要注明单位;3.列:列代数式,列方程;4.解:解所列的方程;5.验:是否是所列方程的根;是否符合题意;6.答:答案也必须是完整的语句,注明单位且要贴近生活.列方程解应用题的一般步骤是:1.审:审清题意:已知什么,求什15列方程解应用题的关键是:寻找等量关系列方程解应用题的关键是:寻找等量关系1624.4一元二次方程的应用(3)(其他问题)24.4一元二次方程的应用(3)17请同学们回忆并回答与利润相关的知识:利润率=________,利润=_____-进价。售价=标价×折扣,9折要乘以90%或0.9或,那么x折呢?某商品进价800元,标价1200元,8折销售,利润是_____,利润率是_____。请同学们回忆并回答与利润相关的知识:某商品进价800元,标价18
例:新华商场销售某种冰箱,每台进货价为2500元。调查发现,当销售价为2900元时,平均每天能售出8台;而当销售价每降低50元时,平均每天就能多售出4台。商场要想使这种冰箱的销售利润平均每天达到5000元,每台冰箱的定价应为多少元?例:新华商场销售某种冰箱,每台进货价为2500元。调查发现19如果设每台冰箱降价x元,那么每台冰箱的定价就是————————————元,每台冰箱的销售利润为————————————元,平均每天销售冰箱的数量为————————————台。这样就可以列出一个方程,从而使问题得到解决。
分析:本题的主要等量关系:每台冰箱的销售利润×平均每天销售冰箱的数量=5000元(2900-x-2500)(2900-x)也可以用列表的方法进行分析:(如下表)如果设每台冰箱降价x元,那么每台冰箱的定价分析:本题的主要等20每天的销售量/台每台的销售利润/元总销售利润/元降价前降价后82900-2500(2900-2500)×82900-x-25005000每天的销售量/台每台的销售利润/元总销售利润/元降价前降价后21思考:本题若设定价为x元,应怎么列方程?思考:本题若设定价为x元,应怎么列方程?22做一做某商场将进货价为30元的台灯以40元售出,平均每月能售出600个。调查发现,售价在40元至60元范围内,这种台灯的售价每上涨1元,其销售量就将减少10个。为了实现平均每月10000元的销售利润,这种台灯的售价应定为多少?这时应进台灯多少个?50元,500个做一做某商场将进货价为30元的台灯以40元售出,平均每月能售23议一议利用方程解决实际问题的关键是什么?寻找等量关系议一议寻找等量关系24练习某批发市场礼品柜台春节期间购进大量贺年片,一种贺年片平均每天能售出500张,每张盈利0.3元.为了尽快减少库存,摊主决定采取适当的降价措施.调查发现,如果这种贺年卡的售价每降价0.05元,那么平均每天可多售出200张.摊主要想平均每天盈利180元,每张贺年片应降价多少元?练习某批发市场礼品柜台春节期间购进大量贺年片,一种贺年片平均25某种服装,平均每天可销售20件,每件盈利44元.在每件降价幅度不超过10元的情况下,若每件降价1元,则每天可多售5件.如果每天盈利1600元,每件应降价多少元?(不合题意,舍去)答:每件服装应降价4元.某种服装,平均每天可销售20件,每件盈利44元.在每件降价幅26一个班每两个人都互相握手一次,有人统计一共握了3003次手,请问这班的人数是多少?一个班每两个人都互相握手一次,有人统计一共握了3003次手,27某花圃用花盆培育某种花苗,经过试验发现每盆的盈利与每盆的株数构成一定的关系.每盆植入3株时,平均单株盈利3元;以同样的栽培条件,若每盆增加1株,平均单株盈利就减少0.5元.要使每盆的盈利达到10元,每盆应该植多少株?(x+3)(3-0.5x)=10解这个方程,得:x1=1,x2=2答:要使每盆的盈利达到10元,每盆应植入4株或5株.某花圃用花盆培育某种花苗,经过试验发现每盆的盈利与每盆的株数28一个农业合作社以64000元的成本收获了某种农场品80t,目前可以以1200元/t的价格出售。如果储藏起来,每星期会损失2t,且每星期需支付各种费用1600元,但同时每星期每吨的价格将上涨200元。那么,储藏多少个星期出售这批农场品可获利122000元?解:设储藏x个星期出售这批农场品可获利122000元,根据题意,得(80-2x)(1200+200x)-1600x-64000=122000整理,得x2-30x+225=0解得x1=x2=15所以,储藏15个星期出售这批农场品可获利122000元。一个农业合作社以64000元的成本收获了某种农场品80t,目29某公司今年10月的营业额为2500万元,按计划第四季度的总营业额要达到9100万元,求该公司11,12两个月营业额的月均增长率。解:设该公司11,12两个月营业额的月均增长率为x,根据题意,得2500+2500(1+x)+2500(1+x)2=9100整理,得x2+3x-0.64=0解得x1=0.2,x2=-3.2(不合题意,舍去)所以,设该公司11,12两个月营业额的月均增长率为20%。某公司今年10月的营业额为2500万元,按计划第四季度的总营30列方程解应用题的一般步骤是
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 优先退租房合同模板
- 与公司合作供水果合同模板
- 夜场水电安装合同范例
- 利津粮食购销合同范例
- 取暖费合同范例
- 代采购设备合同范例
- 个人按揭房屋合同范例
- 信息系统安全审计合同模板
- 国际租赁合同范例
- 养鱼合作转让合同范例
- 高考物理系统性复习 (能力提高练) 第五节 实验:探究小车速度随时间变化的规律(附解析)
- 眼科护理中的孕妇与产妇护理
- 业主业主委员会通用课件
- 了解金融市场和金融产品
- 南京理工大学2015年613物理化学(含答案)考研真题
- 初中数学应用题解题思路分享
- 安全生产科技创新与应用
- 人工智能在文化传承与遗产保护中的价值实现
- 2024年汽修厂开业计划书
- ISTA标准-2A、2B、2C系列解读(图文)
- 日间手术应急预案方案
评论
0/150
提交评论