![2023届重庆市南川中学高三第一次调研测试数学试卷(含答案解析)_第1页](http://file4.renrendoc.com/view/d28a7632b934c2126ed29153c638865b/d28a7632b934c2126ed29153c638865b1.gif)
![2023届重庆市南川中学高三第一次调研测试数学试卷(含答案解析)_第2页](http://file4.renrendoc.com/view/d28a7632b934c2126ed29153c638865b/d28a7632b934c2126ed29153c638865b2.gif)
![2023届重庆市南川中学高三第一次调研测试数学试卷(含答案解析)_第3页](http://file4.renrendoc.com/view/d28a7632b934c2126ed29153c638865b/d28a7632b934c2126ed29153c638865b3.gif)
![2023届重庆市南川中学高三第一次调研测试数学试卷(含答案解析)_第4页](http://file4.renrendoc.com/view/d28a7632b934c2126ed29153c638865b/d28a7632b934c2126ed29153c638865b4.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023高考数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.下列与的终边相同的角的表达式中正确的是()A.2kπ+45°(k∈Z) B.k·360°+π(k∈Z)C.k·360°-315°(k∈Z) D.kπ+(k∈Z)2.已知为定义在上的偶函数,当时,,则()A. B. C. D.3.函数的图象可能为()A. B.C. D.4.函数的图象大致是()A. B.C. D.5.已知幂函数的图象过点,且,,,则,,的大小关系为()A. B. C. D.6.已知函数,若函数的所有零点依次记为,且,则()A. B. C. D.7.函数()的图像可以是()A. B.C. D.8.函数的图象与函数的图象的交点横坐标的和为()A. B. C. D.9.已知复数z=(1+2i)(1+ai)(a∈R),若z∈R,则实数a=()A. B. C.2 D.﹣210.如图,某几何体的三视图是由三个边长为2的正方形和其内部的一些虚线构成的,则该几何体的体积为()A. B. C.6 D.与点O的位置有关11.已知是定义是上的奇函数,满足,当时,,则函数在区间上的零点个数是()A.3 B.5 C.7 D.912.已知展开式的二项式系数和与展开式中常数项相等,则项系数为()A.10 B.32 C.40 D.80二、填空题:本题共4小题,每小题5分,共20分。13.已知,满足,则的展开式中的系数为______.14.已知椭圆:的左,右焦点分别为,,过的直线交椭圆于,两点,若,且的三边长,,成等差数列,则的离心率为__________.15.已知等比数列的各项都是正数,且成等差数列,则=__________.16.已知平面向量与的夹角为,,,则________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)图1是由矩形ADEB,Rt△ABC和菱形BFGC组成的一个平面图形,其中AB=1,BE=BF=2,∠FBC=60°,将其沿AB,BC折起使得BE与BF重合,连结DG,如图2.(1)证明:图2中的A,C,G,D四点共面,且平面ABC⊥平面BCGE;(2)求图2中的二面角B−CG−A的大小.18.(12分)在平面直角坐标系中,曲线的参数方程为(为参数).在以坐标原点为极点,轴的正半轴为极轴的极坐标系中,直线的极坐标方程为.(1)求曲线的普通方程及直线的直角坐标方程;(2)求曲线上的点到直线的距离的最大值与最小值.19.(12分)已知,,,.(1)求的值;(2)求的值.20.(12分)如图,在多面体中,四边形是菱形,,,,平面,,,是的中点.(Ⅰ)求证:平面平面;(ⅠⅠ)求直线与平面所成的角的正弦值.21.(12分)如图,四边形中,,,,沿对角线将翻折成,使得.(1)证明:;(2)求直线与平面所成角的正弦值.22.(10分)已知函数.(1)求的极值;(2)若,且,证明:.
2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.C【答案解析】
利用终边相同的角的公式判断即得正确答案.【题目详解】与的终边相同的角可以写成2kπ+(k∈Z),但是角度制与弧度制不能混用,所以只有答案C正确.故答案为C【答案点睛】(1)本题主要考查终边相同的角的公式,意在考查学生对该知识的掌握水平和分析推理能力.(2)与终边相同的角=+其中.2.D【答案解析】
判断,利用函数的奇偶性代入计算得到答案.【题目详解】∵,∴.故选:【答案点睛】本题考查了利用函数的奇偶性求值,意在考查学生对于函数性质的灵活运用.3.C【答案解析】
先根据是奇函数,排除A,B,再取特殊值验证求解.【题目详解】因为,所以是奇函数,故排除A,B,又,故选:C【答案点睛】本题主要考查函数的图象,还考查了理解辨析的能力,属于基础题.4.C【答案解析】
根据函数奇偶性可排除AB选项;结合特殊值,即可排除D选项.【题目详解】∵,,∴函数为奇函数,∴排除选项A,B;又∵当时,,故选:C.【答案点睛】本题考查了依据函数解析式选择函数图象,注意奇偶性及特殊值的用法,属于基础题.5.A【答案解析】
根据题意求得参数,根据对数的运算性质,以及对数函数的单调性即可判断.【题目详解】依题意,得,故,故,,,则.故选:A.【答案点睛】本题考查利用指数函数和对数函数的单调性比较大小,考查推理论证能力,属基础题.6.C【答案解析】
令,求出在的对称轴,由三角函数的对称性可得,将式子相加并整理即可求得的值.【题目详解】令,得,即对称轴为.函数周期,令,可得.则函数在上有8条对称轴.根据正弦函数的性质可知,将以上各式相加得:故选:C.【答案点睛】本题考查了三角函数的对称性,考查了三角函数的周期性,考查了等差数列求和.本题的难点是将所求的式子拆分为的形式.7.B【答案解析】
根据,可排除,然后采用导数,判断原函数的单调性,可得结果.【题目详解】由题可知:,所以当时,,又,令,则令,则所以函数在单调递减在单调递增,故选:B【答案点睛】本题考查函数的图像,可从以下指标进行观察:(1)定义域;(2)奇偶性;(3)特殊值;(4)单调性;(5)值域,属基础题.8.B【答案解析】
根据两个函数相等,求出所有交点的横坐标,然后求和即可.【题目详解】令,有,所以或.又,所以或或或,所以函数的图象与函数的图象交点的横坐标的和,故选B.【答案点睛】本题主要考查三角函数的图象及给值求角,侧重考查数学建模和数学运算的核心素养.9.D【答案解析】
化简z=(1+2i)(1+ai)=,再根据z∈R求解.【题目详解】因为z=(1+2i)(1+ai)=,又因为z∈R,所以,解得a=-2.故选:D【答案点睛】本题主要考查复数的运算及概念,还考查了运算求解的能力,属于基础题.10.B【答案解析】
根据三视图还原直观图如下图所示,几何体的体积为正方体的体积减去四棱锥的体积,即可求出结论.【题目详解】如下图是还原后的几何体,是由棱长为2的正方体挖去一个四棱锥构成的,正方体的体积为8,四棱锥的底面是边长为2的正方形,顶点O在平面上,高为2,所以四棱锥的体积为,所以该几何体的体积为.故选:B.【答案点睛】本题考查三视图求几何体的体积,还原几何体的直观图是解题的关键,属于基础题.11.D【答案解析】
根据是定义是上的奇函数,满足,可得函数的周期为3,再由奇函数的性质结合已知可得,利用周期性可得函数在区间上的零点个数.【题目详解】∵是定义是上的奇函数,满足,,可得,
函数的周期为3,
∵当时,,
令,则,解得或1,
又∵函数是定义域为的奇函数,
∴在区间上,有.
由,取,得,得,
∴.
又∵函数是周期为3的周期函数,
∴方程=0在区间上的解有共9个,
故选D.【答案点睛】本题考查根的存在性及根的个数判断,考查抽象函数周期性的应用,考查逻辑思维能力与推理论证能力,属于中档题.12.D【答案解析】
根据二项式定理通项公式可得常数项,然后二项式系数和,可得,最后依据,可得结果.【题目详解】由题可知:当时,常数项为又展开式的二项式系数和为由所以当时,所以项系数为故选:D【答案点睛】本题考查二项式定理通项公式,熟悉公式,细心计算,属基础题.二、填空题:本题共4小题,每小题5分,共20分。13.1【答案解析】
根据二项式定理求出,然后再由二项式定理或多项式的乘法法则结合组合的知识求得系数.【题目详解】由题意,.∴的展开式中的系数为.故答案为:1.【答案点睛】本题考查二项式定理,掌握二项式定理的应用是解题关键.14.【答案解析】
设,,,根据勾股定理得出,而由椭圆的定义得出的周长为,有,便可求出和的关系,即可求得椭圆的离心率.【题目详解】解:由已知,的三边长,,成等差数列,设,,,而,根据勾股定理有:,解得:,由椭圆定义知:的周长为,有,,在直角中,由勾股定理,,即:,∴离心率.故答案为:.【答案点睛】本题考查椭圆的离心率以及椭圆的定义的应用,考查计算能力.15.【答案解析】
根据等差中项性质,结合等比数列通项公式即可求得公比;代入表达式,结合对数式的化简即可求解.【题目详解】等比数列的各项都是正数,且成等差数列,则,由等比数列通项公式可知,所以,解得或(舍),所以由对数式运算性质可得,故答案为:.【答案点睛】本题考查了等差数列通项公式的简单应用,等比数列通项公式的用法,对数式的化简运算,属于中档题.16.【答案解析】
根据已知求出,利用向量的运算律,求出即可.【题目详解】由可得,则,所以.故答案为:【答案点睛】本题考查向量的模、向量的数量积运算,考查计算求解能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)见详解;(2).【答案解析】
(1)因为折纸和粘合不改变矩形,和菱形内部的夹角,所以,依然成立,又因和粘在一起,所以得证.因为是平面垂线,所以易证.(2)在图中找到对应的平面角,再求此平面角即可.于是考虑关于的垂线,发现此垂足与的连线也垂直于.按照此思路即证.【题目详解】(1)证:,,又因为和粘在一起.,A,C,G,D四点共面.又.平面BCGE,平面ABC,平面ABC平面BCGE,得证.(2)过B作延长线于H,连结AH,因为AB平面BCGE,所以而又,故平面,所以.又因为所以是二面角的平面角,而在中,又因为故,所以.而在中,,即二面角的度数为.【答案点睛】很新颖的立体几何考题.首先是多面体粘合问题,考查考生在粘合过程中哪些量是不变的.再者粘合后的多面体不是直棱柱,建系的向量解法在本题中略显麻烦,突出考查几何方法.最后将求二面角转化为求二面角的平面角问题考查考生的空间想象能力.18.(1),(2)最大值,最小值【答案解析】
(1)由曲线的参数方程,得两式平方相加求解,根据直线的极坐标方程,展开有,再根据求解.(2)因为曲线C是一个半圆,利用数形结合,圆心到直线的距离减半径即为最小值,最大值点由图可知.【题目详解】(1)因为曲线的参数方程为所以两式平方相加得:因为直线的极坐标方程为.所以所以即(2)如图所示:圆心C到直线的距离为:所以圆上的点到直线的最小值为:则点M(2,0)到直线的距离为最大值:【答案点睛】本题主要考查参数方程,普通方程及极坐标方程的转化和直线与圆的位置关系,还考查了数形结合的思想和运算求解的能力,属于中档题.19.(1)(2)【答案解析】
(1)先利用同角的三角函数关系解得和,再由,利用正弦的差角公式求解即可;(2)由(1)可得和,利用余弦的二倍角公式求得,再由正切的和角公式求解即可.【题目详解】解:(1)因为,所以又,故,所以,所以(2)由(1)得,,,所以,所以,因为且,即,解得,因为,所以,所以,所以,所以【答案点睛】本题考查已知三角函数值求值,考查三角函数的化简,考查和角公式,二倍角公式,同角的三角函数关系的应用,考查运算能力.20.(Ⅰ)详见解析;(Ⅱ).【答案解析】试题分析:(Ⅰ)连接交于,得,所以面,又,得面,即可利用面面平行的判定定理,证得结论;(Ⅱ)如图,以O为坐标原点,建立空间直角坐标系,求的平面的一个法向量,利用向量和向量夹角公式,即可求解与平面所成角的正弦值.试题解析:(Ⅰ)连接BD交AC于O,易知O是BD的中点,故OG//BE,BE面BEF,OG在面BEF外,所以OG//面BEF;又EF//AC,AC在面BEF外,AC//面BEF,又AC与OG相交于点O,面ACG有两条相交直线与面BEF平行,故面ACG∥面BEF;(Ⅱ)如图,以O为坐标原点,分别以OC、OD、OF为x、y、z轴建立空间直角坐标系,则,,,,,,,设面ABF的法向量为,依题意有,,令,,,,,直线AD与面ABF成的角的正弦值是.21.(1)见证明;(2)【答案解析】
(1)取的中点,连.可证得,,于是可得平面,进而可得结论成立.(2)运用几何法或向量法求解可得所求角的正弦值.【题目详解】(1)证明:取的中点,连.∵,∴.又,∴.在中,,∴.又,∴平面,又平面,∴.(2)解法1:取的中点,连结,∵,∴,又,∴.又由题意得为等边三角形,∴,∵,∴平面.作,则有平面,∴就是直线与平面所成的角.设,则,在等边中,.又在中,,故.在中,由余弦定理得,∴,∴直线与平面所成角的正弦值为.解法2:由题意可得,建立如图所示的空间直角坐标系.不妨设,则在直角三角形中,可得,作于,则有平面几何知识可得,∴.又可得,.∴,.设平面的一个法向量为,由,得,令,则得.又,设直线与平面所成的角为,则.所以直线与平面所成角的正弦值为.【答案点睛】利用向量法求解直线和平面所成角时,关键点是恰当建立空间直角坐标系,确定斜线的方向向量和平面的法向量.解题时通过平面的法向量和直线的方向向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角或钝角的补角,取其余角就是斜线与平面所成的角.求解时注意向量的夹角与线面
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 苏科版数学八年级上册5.1《物体位置的确定》听评课记录
- 八年级道德与法治下册第三单元人民当家作主第五课我国基本制度第3框基本政治制度(第1课时中国共产党领导的多党合作和政治协商制度)听课评课记录(新人教版)
- 人教版九年级数学上册第二十五章概率初步《25.3用频率估计概率》听评课记录
- 八年级思想读本《6.2军强才能国安》听课评课记录
- 小学二年级上乘法口算天天练
- 五年级下册数学听评课记录《折纸》北师大版
- 孵化楼租赁合同范本
- 二零二五年度酒店设施租赁及使用权购买合同
- 外架工班组劳务分包协议书范本
- 工程项目全过程管理协议书范本
- 一级建造师继续教育最全题库及答案(新)
- 2022年高考湖南卷生物试题(含答案解析)
- GB/T 20909-2007钢门窗
- GB/T 17854-1999埋弧焊用不锈钢焊丝和焊剂
- GB/T 15593-2020输血(液)器具用聚氯乙烯塑料
- 直线加速器专项施工方案
- 联苯二氯苄生产工艺及产排污分析
- 储能设备项目采购供应质量管理方案
- 2022年全国卷高考语文答题卡格式
- 复旦大学简介 (课堂PPT)
- CKD马达使用说明
评论
0/150
提交评论