安徽省铜陵市义安区铜都双语学校2023学年高考数学一模试卷(含解析)_第1页
安徽省铜陵市义安区铜都双语学校2023学年高考数学一模试卷(含解析)_第2页
安徽省铜陵市义安区铜都双语学校2023学年高考数学一模试卷(含解析)_第3页
安徽省铜陵市义安区铜都双语学校2023学年高考数学一模试卷(含解析)_第4页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023学年高考数学模拟测试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知集合,,则为()A. B. C. D.2.函数的图象如图所示,则它的解析式可能是()A. B.C. D.3.过双曲线的右焦点F作双曲线C的一条弦AB,且,若以AB为直径的圆经过双曲线C的左顶点,则双曲线C的离心率为()A. B. C.2 D.4.已知正四面体外接球的体积为,则这个四面体的表面积为()A. B. C. D.5.函数的最大值为,最小正周期为,则有序数对为()A. B. C. D.6.设是双曲线的左、右焦点,若双曲线右支上存在一点,使(为坐标原点),且,则双曲线的离心率为()A. B. C. D.7.已知集合A={x|x<1},B={x|},则A. B.C. D.8.若函数的定义域为M={x|-2≤x≤2},值域为N={y|0≤y≤2},则函数的图像可能是()A. B. C. D.9.把函数的图象向右平移个单位,得到函数的图象.给出下列四个命题①的值域为②的一个对称轴是③的一个对称中心是④存在两条互相垂直的切线其中正确的命题个数是()A.1 B.2 C.3 D.410.函数f(x)=2x-3A.[32C.[3211.半正多面体(semiregularsolid)亦称“阿基米德多面体”,是由边数不全相同的正多边形为面的多面体,体现了数学的对称美.二十四等边体就是一种半正多面体,是由正方体切截而成的,它由八个正三角形和六个正方形为面的半正多面体.如图所示,图中网格是边长为1的正方形,粗线部分是某二十四等边体的三视图,则该几何体的体积为()A. B. C. D.12.设点,,不共线,则“”是“”()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分又不必要条件二、填空题:本题共4小题,每小题5分,共20分。13.已知函数为奇函数,,且与图象的交点为,,…,,则______.14.若,且,则的最小值是______.15.已知,若,则________.16.若为假,则实数的取值范围为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在直角坐标系中,曲线上的任意一点到直线的距离比点到点的距离小1.(1)求动点的轨迹的方程;(2)若点是圆上一动点,过点作曲线的两条切线,切点分别为,求直线斜率的取值范围.18.(12分)已知抛物线与直线.(1)求抛物线C上的点到直线l距离的最小值;(2)设点是直线l上的动点,是定点,过点P作抛物线C的两条切线,切点为A,B,求证A,Q,B共线;并在时求点P坐标.19.(12分)在平面直角坐标系中,曲线的参数方程为:(为参数),以为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为:.(1)求曲线的极坐标方程和曲线的直角坐标方程;(2)若直线与曲线交于,两点,与曲线交于,两点,求取得最大值时直线的直角坐标方程.20.(12分)求下列函数的导数:(1)(2)21.(12分)已知函数.(1)若在上单调递增,求实数的取值范围;(2)若,对,恒有成立,求实数的最小值.22.(10分)已知函数.(Ⅰ)当时,求不等式的解集;(Ⅱ)若存在满足不等式,求实数的取值范围.

2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【答案解析】

分别求解出集合的具体范围,由集合的交集运算即可求得答案.【题目详解】因为集合,,所以故选:C【答案点睛】本题考查对数函数的定义域求法、一元二次不等式的解法及集合的交集运算,考查基本运算能力.2、B【答案解析】

根据定义域排除,求出的值,可以排除,考虑排除.【题目详解】根据函数图象得定义域为,所以不合题意;选项,计算,不符合函数图象;对于选项,与函数图象不一致;选项符合函数图象特征.故选:B【答案点睛】此题考查根据函数图象选择合适的解析式,主要利用函数性质分析,常见方法为排除法.3、C【答案解析】

由得F是弦AB的中点.进而得AB垂直于x轴,得,再结合关系求解即可【题目详解】因为,所以F是弦AB的中点.且AB垂直于x轴.因为以AB为直径的圆经过双曲线C的左顶点,所以,即,则,故.故选:C【答案点睛】本题是对双曲线的渐近线以及离心率的综合考查,是考查基本知识,属于基础题.4、B【答案解析】

设正四面体ABCD的外接球的半径R,将该正四面体放入一个正方体内,使得每条棱恰好为正方体的面对角线,根据正方体和正四面体的外接球为同一个球计算出正方体的棱长,从而得出正四面体的棱长,最后可求出正四面体的表面积.【题目详解】将正四面体ABCD放在一个正方体内,设正方体的棱长为a,如图所示,设正四面体ABCD的外接球的半径为R,则,得.因为正四面体ABCD的外接球和正方体的外接球是同一个球,则有,∴.而正四面体ABCD的每条棱长均为正方体的面对角线长,所以,正四面体ABCD的棱长为,因此,这个正四面体的表面积为.故选:B.【答案点睛】本题考查球的内接多面体,解决这类问题就是找出合适的模型将球体的半径与几何体的一些几何量联系起来,考查计算能力,属于中档题.5、B【答案解析】函数(为辅助角)∴函数的最大值为,最小正周期为故选B6、D【答案解析】

利用向量运算可得,即,由为的中位线,得到,所以,再根据双曲线定义即可求得离心率.【题目详解】取的中点,则由得,即;在中,为的中位线,所以,所以;由双曲线定义知,且,所以,解得,故选:D【答案点睛】本题综合考查向量运算与双曲线的相关性质,难度一般.7、A【答案解析】∵集合∴∵集合∴,故选A8、B【答案解析】因为对A不符合定义域当中的每一个元素都有象,即可排除;对B满足函数定义,故符合;对C出现了定义域当中的一个元素对应值域当中的两个元素的情况,不符合函数的定义,从而可以否定;对D因为值域当中有的元素没有原象,故可否定.故选B.9、C【答案解析】

由图象变换的原则可得,由可求得值域;利用代入检验法判断②③;对求导,并得到导函数的值域,即可判断④.【题目详解】由题,,则向右平移个单位可得,,的值域为,①错误;当时,,所以是函数的一条对称轴,②正确;当时,,所以的一个对称中心是,③正确;,则,使得,则在和处的切线互相垂直,④正确.即②③④正确,共3个.故选:C【答案点睛】本题考查三角函数的图像变换,考查代入检验法判断余弦型函数的对称轴和对称中心,考查导函数的几何意义的应用.10、A【答案解析】

根据幂函数的定义域与分母不为零列不等式组求解即可.【题目详解】因为函数y=2x-3解得x≥32且∴函数f(x)=2x-3+1【答案点睛】定义域的三种类型及求法:(1)已知函数的解析式,则构造使解析式有意义的不等式(组)求解;(2)对实际问题:由实际意义及使解析式有意义构成的不等式(组)求解;(3)若已知函数fx的定义域为a,b,则函数fgx11、D【答案解析】

根据三视图作出该二十四等边体如下图所示,求出该几何体的棱长,可以将该几何体看作是相应的正方体沿各棱的中点截去8个三棱锥所得到的,可求出其体积.【题目详解】如下图所示,将该二十四等边体的直观图置于棱长为2的正方体中,由三视图可知,该几何体的棱长为,它是由棱长为2的正方体沿各棱中点截去8个三棱锥所得到的,该几何体的体积为,故选:D.【答案点睛】本题考查三视图,几何体的体积,对于二十四等边体比较好的处理方式是由正方体各棱的中点得到,属于中档题.12、C【答案解析】

利用向量垂直的表示、向量数量积的运算,结合充分必要条件的定义判断即可.【题目详解】由于点,,不共线,则“”;故“”是“”的充分必要条件.故选:C.【答案点睛】本小题主要考查充分、必要条件的判断,考查向量垂直的表示,考查向量数量积的运算,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、18【答案解析】

由题意得函数f(x)与g(x)的图像都关于点对称,结合函数的对称性进行求解即可.【题目详解】函数为奇函数,函数关于点对称,,函数关于点对称,所以两个函数图象的交点也关于点(1,2)对称,与图像的交点为,,…,,两两关于点对称,.故答案为:18【答案点睛】本题考查了函数对称性的应用,结合函数奇偶性以及分式函数的性质求出函数的对称性是解决本题的关键,属于中档题.14、8【答案解析】

利用的代换,将写成,然后根据基本不等式求解最小值.【题目详解】因为(即取等号),所以最小值为.【答案点睛】已知,求解()的最小值的处理方法:利用,得到,展开后利用基本不等式求解,注意取等号的条件.15、1【答案解析】

由题意先求得的值,可得,再令,可得结论.【题目详解】已知,,,,令,可得,故答案为:1.【答案点睛】本题主要考查二项式定理的应用,注意根据题意,分析所给代数式的特点,通过给二项式的赋值,求展开式的系数和,可以简便的求出答案,属于基础题.16、【答案解析】

由为假,可知为真,所以对任意实数恒成立,求出的最小值,令即可.【题目详解】因为为假,则其否定为真,即为真,所以对任意实数恒成立,所以.又,当且仅当,即时,等号成立,所以.故答案为:.【答案点睛】本题考查全称命题与特称命题间的关系的应用,利用参变分离是解决本题的关键,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【答案解析】

(1)设,根据题意可得点的轨迹方程满足的等式,化简即可求得动点的轨迹的方程;(2)设出切线的斜率分别为,切点,,点,则可得过点的拋物线的切线方程为,联立抛物线方程并化简,由相切时可得两条切线斜率关系;由抛物线方程求得导函数,并由导数的几何意义并代入抛物线方程表示出,可求得,结合点满足的方程可得的取值范围,即可求得的范围.【题目详解】(1)设点,∵点到直线的距离等于,∴,化简得,∴动点的轨迹的方程为.(2)由题意可知,的斜率都存在,分别设为,切点,,设点,过点的拋物线的切线方程为,联立,化简可得,∴,即,∴,.由,求得导函数,∴,,,∴,因为点满足,由圆的性质可得,∴,即直线斜率的取值范围为.【答案点睛】本题考查了动点轨迹方程的求法,直线与抛物线相切的性质及应用,导函数的几何意义及应用,点和圆位置关系求参数的取值范围,属于中档题.18、(1);(2)证明见解析,或【答案解析】

(1)根据点到直线的公式结合二次函数的性质即可求出;(2)设,,,,表示出直线,的方程,利用表示出,,即可求定点的坐标.【题目详解】(1)设抛物线上点的坐标为,则,时取等号),则抛物线上的点到直线距离的最小值;(2)设,,,,,,直线,的方程为分别为,,由两条直线都经过点点得,为方程的两根,,直线的方程为,,,,,共线.又,,,解,,点,是直线上的动点,时,,时,,,或.【答案点睛】本题考查抛物线的方程的求法,考查直线方程的求法,考查直线过定点的解法,意在考查学生对这些知识的理解掌握水平和分析推理能力.19、(1)曲线,曲线.(2).【答案解析】

(1)用和消去参数即得的极坐标方程;将两边同时乘以,然后由解得直角坐标方程.(2)过极点的直线的参数方程为,代入到和:中,表示出即可求解.【题目详解】解:由和,得,化简得故:将两边同时乘以,得因为,所以得的直角坐标方程.(2)设直线的极坐标方程由,得,由,得故当时,取得最大值此时直线的极坐标方程为:,其直角坐标方程为:.【答案点睛】考查直角坐标方程、极坐标方程、参数方程的互相转化以及应用圆的极坐标方程中的几何意义求距离的的最大值方法;中档题.20、(1);(2).【答案解析】

(1)根据复合函数的求导法则可得结果.(2)同样根据复合函数的求导法则可得结果.【题目详解】(1)令,,则,而,,故.(2)令,,则,而,,故,化简得到.【答案点睛】本题考查复合函数的导数,此类问题一般是先把函数分解为简单函数的复合,再根据复合函数的求导法则可得所求的导数,本题属于容易题.21、(1)(2)【答案解析】

(1)求得,根据已知条件得到在恒成立,由此得到在恒成立,利用分离常数法求得的取值范围.(2)构造函数设,利用求二阶导数的方法,结合恒成立,求得的取值范围,由此求得的最小值.【题目详解】(1)因为在上单调递增,所以在恒成立,即在恒成立,当时,上式成立,当,有,需,而,,,,故综上,实数的取值范围是(2)设,,则,令,,在单调递增,也就是在单调递增,所以.当即时,,不符合;当即时,,符合当即时,根据零点存在定理,,使,有时,,在单调递减,时,,在单调递增,成立,故只需即可,有,得,符合综上得,,实数的最小值

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论