2023届山东省王浩屯中学九年级数学上册期末联考试题含解析_第1页
2023届山东省王浩屯中学九年级数学上册期末联考试题含解析_第2页
2023届山东省王浩屯中学九年级数学上册期末联考试题含解析_第3页
2023届山东省王浩屯中学九年级数学上册期末联考试题含解析_第4页
2023届山东省王浩屯中学九年级数学上册期末联考试题含解析_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.一元二次方程的根的情况是()A.有两个相等的实数根 B.有两个不相等的实数根C.没有实数根 D.不能确定2.关于的分式方程的解为非负整数,且一次函数的图象不经过第三象限,则满足条件的所有整数的和为()A. B. C. D.3.如图,在4×4的网格中,点A,B,C,D,H均在网格的格点上,下面结论:①点H是△ABD的内心②点H是△ABD的外心③点H是△BCD的外心④点H是△ADC的外心其中正确的有()A.1个 B.2个 C.3个 D.4个4.一个盒子里装有若干个红球和白球,每个球除颜色以外都相同.5位同学进行摸球游戏,每位同学摸10次(摸出1球后放回,摇匀后再继续摸),其中摸到红球数依次为8,5,9,7,6,则估计盒中红球和白球的个数是()A.红球比白球多 B.白球比红球多 C.红球,白球一样多 D.无法估计5.如图,正五边形内接于⊙,为上的一点(点不与点重合),则的度数为()A. B. C. D.6.如图,线段AB两个端点的坐标分别为A(6,6),B(8,2).以原点O为位似中心,在第一象限内将线段AB缩小后得到线段CD,且D(4,1),则端点C的坐标为()A.(3,1) B.(4,1) C.(3,3) D.(3,4)7.如图,在ABCD中,∠DAB=10°,AB=8,AD=1.⊙O分别切边AB,AD于点E,F,且圆心O好落在DE上.现将⊙O沿AB方向滚动到与BC边相切(点O在ABCD的内部),则圆心O移动的路径长为()A.2 B.4 C.5﹣ D.8﹣28.在平面直角坐标系中,二次函数的图象可能是()A. B. C. D.9.已知实数m,n满足条件m2﹣7m+2=0,n2﹣7n+2=0,则+的值是()A. B. C.或2 D.或210.计算的结果是()A. B. C. D.911.如图,OA交⊙O于点B,AD切⊙O于点D,点C在⊙O上.若∠A=40°,则∠C为()A.20° B.25° C.30° D.35°12.如图,反比例函数的图象经过点A(2,1),若≤1,则x的范围为()A.≥1 B.≥2 C.<0或≥2 D.<0或0<≤1二、填空题(每题4分,共24分)13.如图,A是反比例函数y=(x>0)图象上一点,以OA为斜边作等腰直角△ABO,将△ABO绕点O以逆时针旋转135°,得到△A1B1O,若反比例函数y=的图象经过点B1,则k的值是_____.14.在泰州市举行的大阅读活动中,小明同学发现自己的一本书的宽与长之比为黄金比.已知这本书的长为20cm,则它的宽为________cm.(结果保留根号)15.如图,竖直放置的一个铝合金窗框由矩形和弧形两部分组成,AB=m,AD=2m,弧CD所对的圆心角为∠COD=120°.现将窗框绕点B顺时针旋转横放在水平的地面上,这一过程中,窗框上的点到地面的最大高度为__m.16.设,,,设,则S=________________(用含有n的代数式表示,其中n为正整数).17.如图,A,B是反比例函数y=在第一象限内的图象上的两点,且A,B两点的横坐标分别是2和4,则△OAB的面积是_____.18.计算:cos45°=________________三、解答题(共78分)19.(8分)如图,点B,E,C,F在一条直线上,AB=DE,AC=DF,BE=CF,求证:∠A=∠D.20.(8分)如图,直线分别与轴交于点,与轴交于点,与双曲线交于点.(1)求与的值;(2)已知是轴上的一点,当时,求点的坐标.21.(8分)如图,在平面直角坐标系中,∠ACB=90°,OC=2BO,AC=6,点B的坐标为(1,0),抛物线y=﹣x2+bx+c经过A、B两点.(1)求点A的坐标;(2)求抛物线的解析式;(3)点P是直线AB上方抛物线上的一点,过点P作PD垂直x轴于点D,交线段AB于点E,使PE=DE.①求点P的坐标;②在直线PD上是否存在点M,使△ABM为直角三角形?若存在,求出符合条件的所有点M的坐标;若不存在,请说明理由.22.(10分)已知二次函数.(1)用配方法求出函数的顶点坐标;(2)求出该二次函数图象与轴的交点坐标。(3)该图象向右平移个单位,可使平移后所得图象经过坐标原点.请直接写出平移后所得图象与轴的另一个交点的坐标为.23.(10分)在平面直角坐标系中,对“隔离直线”给出如下定义:点是图形上的任意一点,点是图形上的任意一点,若存在直线:满足且,则称直线:是图形与的“隔离直线”,如图,直线:是函数的图像与正方形的一条“隔离直线”.

(1)在直线①,②,③,④中,是图函数的图像与正方形的“隔离直线”的为.(2)如图,第一象限的等腰直角三角形的两腰分别与坐标轴平行,直角顶点的坐标是,⊙O的半径为,是否存在与⊙O的“隔离直线”?若存在,求出此“隔离直线”的表达式:若不存在,请说明理由;(3)正方形的一边在轴上,其它三边都在轴的左侧,点是此正方形的中心,若存在直线是函数的图像与正方形的“隔离直线”,请直接写出的取值范围.24.(10分)如图,抛物线与直线恰好交于坐标轴上A、B两点,C为直线AB上方抛物线上一动点,过点C作CD⊥AB于D.(1)求抛物线的解析式;(2)线段CD的长度是否存在最大值?若存在,请求出线段CD长度的最大值,并写出此时点C的坐标;若不存在,请说明理由.25.(12分)解方程(1)x2-6x-7=0;(2)(2x-1)2=1.26.如图,在矩形ABCD中,AB=6,AD=3,点E是边CD的中点,点P,Q分别是射线DC与射线EB上的动点,连结PQ,AP,BP,设DP=t,EQ=2t.(1)当点P在线段DE上(不包括端点)时.①求证:AP=PQ;②当AP平分∠DPB时,求△PBQ的面积.(2)在点P,Q的运动过程中,是否存在这样的t,使得△PBQ为等腰三角形?若存在,请求出t的值;若不存在,试说明理由.

参考答案一、选择题(每题4分,共48分)1、B【分析】根据根的判别式(),求该方程的判别式,根据结果的正负情况即可得到答案.【详解】解:根据题意得:△=22-4×1×(-1)

=4+4

=8>0,即该方程有两个不相等的实数根,

故选:B.【点睛】本题考查了根的判别式.一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.2、A【分析】解分式方程可得且,再根据一次函数的图象不经过第三象限,可得,结合可得,且,再根据是整数和是非负整数求出的所有值,即可求解.【详解】经检验,不是方程的解∴∵分式方程的解为非负整数∴解得且∵一次函数的图象不经过第三象限∴解得∴,且∵是整数∴∵是非负整数故答案为:A.【点睛】本题考查了分式方程和一次函数的问题,掌握解分式方程和解不等式组的方法是解题的关键.3、C【分析】先利用勾股定理计算出AB=BC=,AD=,CD=,AC=,再利用勾股定理的逆定理可得到∠ABC=∠ADC=90°,则CB⊥AB,CD⊥AD,根据角平分线定理的逆定理可判断点C不在∠BAD的角平分线上,则根据三角形内心的定义可对①进行判断;由于HA=HB=HC=HD=,则根据三角形外心的定义可对②③④进行判断.【详解】解:∵AB=BC=,AD=,CD=,AC=,∴AB2+BC2=AC2,CD2+AD2=AC2,∴△ABC和△ADC都为直角三角形,∠ABC=∠ADC=90°,∵CB⊥AB,CD⊥AD,而CB≠CD,∴点C不在∠BAD的角平分线上,∴点H不是△ABD的内心,所以①错误;∵HA=HB=HC=HD=,∴点H是△ABD的外心,点H是△BCD的外心,点H是△ADC的外心,所以②③④正确.故选:C.【点睛】本题考查了三角形的内心:三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.也考查了三角形的外心和勾股定理.4、A【解析】根据题意可得5位同学摸到红球的频率为,由此可得盒子里的红球比白球多.故选A.5、B【分析】根据圆周角的性质即可求解.【详解】连接CO、DO,正五边形内心与相邻两点的夹角为72°,即∠COD=72°,同一圆中,同弧或同弦所对应的圆周角为圆心角的一半,故∠CPD=,故选B.【点睛】此题主要考查圆内接多边形的性质,解题的关键是熟知圆周角定理的应用.6、C【分析】利用位似图形的性质,结合两图形的位似比,即可得出C点坐标.【详解】解:∵线段AB的两个端点坐标分别为A(6,6),B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小后得到线段CD,且D(4,1),∴在第一象限内将线段AB缩小为原来的后得到线段CD,∴点C的横坐标和纵坐标都变为A点的一半,∴点C的坐标为:(3,3).故选:C.【点睛】此题主要考查了位似图形的性质,利用两图形的位似比得出对应点横纵坐标关系是解题关键.在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或−k.7、B【分析】如图所示,⊙O滚过的路程即线段EN的长度.EN=AB-AE-BN,所以只需求AE、BN的长度即可.分别根据AE和BN所在的直角三角形利用三角函数进行计算即可.【详解】解:连接OE,OA、BO.∵AB,AD分别与⊙O相切于点E、F,∴OE⊥AB,OF⊥AD,∴∠OAE=∠OAD=30°,在Rt△ADE中,AD=1,∠ADE=30°,∴AE=AD=3,∴OE=AE=,∵AD∥BC,∠DAB=10°,∴∠ABC=120°.设当运动停止时,⊙O′与BC,AB分别相切于点M,N,连接O′N,O′M.同理可得,∠BO′N为30°,且O′N为,∴BN=O′N•tan30°=1cm,EN=AB﹣AE﹣BN=8﹣3﹣1=2.∴⊙O滚过的路程为2.故选:B.【点睛】本题考查了切线的性质,平行四边形的性质及解直角三角形等知识.关键是计算出AE和BN的长度.8、A【分析】根据二次函数图像的特点可得.【详解】解:二次函数与轴有两个不同的交点,开口方向向上.故选:A.【点睛】本题考查了二次函数的图象,解决本题的关键是二次函数的开口方向和与x轴的交点.9、D【分析】①m≠n时,由题意可得m、n为方程x2﹣7x+2=0的两个实数根,利用韦达定理得出m+n、mn的值,将要求的式子转化为关于m+n、mn的形式,整体代入求值即可;②m=n,直接代入所求式子计算即可.【详解】①m≠n时,由题意得:m、n为方程x2﹣7x+2=0的两个实数根,∴m+n=7,mn=2,+====;②m=n时,+=2.故选D.【点睛】本题主要考查一元二次方程根与系数的关系,分析出m、n是方程的两个根以及分类讨论是解题的关键.10、D【分析】根据负整数指数幂的计算方法:,为正整数),求出的结果是多少即可.【详解】解:,计算的结果是1.故选:D.【点睛】此题主要考查了负整数指数幂:,为正整数),要熟练掌握,解答此题的关键是要明确:(1)计算负整数指数幂时,一定要根据负整数指数幂的意义计算;(2)当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.11、B【分析】根据切线的性质得到∠ODA=90°,根据直角三角形的性质求出∠DOA,根据圆周角定理计算即可.【详解】解:∵切于点∴∴∵∴∴故选:B【点睛】本题考查了切线的性质:圆心与切点的连线垂直切线、圆周角定理以及直角三角形两锐角互余的性质,结合图形认真推导即可得解.12、C【解析】解:由图像可得,当<0或≥2时,≤1.故选C.二、填空题(每题4分,共24分)13、-1【分析】过点A作AE⊥y轴于点E,过点B1作BF⊥y轴于点F,则可证明△OB1F∽△OAE,设A(m,n),B1(a,b),根据三角形相似和等腰三角形的性质求得m=.n=-a,再由反比例函数k的几何意义,可得出k的值.【详解】过点A作AE⊥y轴于点E,过点B1作BF⊥y轴于点F,∵等腰直角△ABO绕点O以逆时针旋转135°,∴∠AOB1=90°,∴∠OB1F=∠AOE,∵∠OFB1=∠AEF=90°,∴△OB1F∽△OAE,∴==,设A(m,n),B1(a,b),∵在等腰直角三角形OAB中,=,OB=OB1,∴==,∴m=b.n=﹣a,∵A是反比例函数y=(x>0)图象上一点,∴mn=4,∴﹣a•b=4,解得ab=﹣1.∵反比例函数y=的图象经过点B1,∴k=﹣1.故答案为:﹣1.【点睛】本题考查了反比例函数k的几何意义及旋转的性质,等腰直角三角形的性质,反比例函数k的几何意义是本题的关键.14、()【解析】设它的宽为xcm.由题意得.∴.点睛:本题主要考查黄金分割的应用.把一条线段分割为两部分,使其中较长部分与全长之比等于较短部分与较长部分之比,其比值是一个无理数,即,近似值约为0.618.15、()【分析】连接OB,过O作OH⊥BC于H,过O作ON⊥CD于N,根据已知条件求出OC和OB的长即可.【详解】连接OB,过O作OH⊥BC于H,过O作ON⊥CD于N,∵∠COD=120°,CO=DO,∴∠OCD=∠ODC=30°,∵ON⊥CO,∴CN=DN=CD=AB=m,∴ON=CN=m,OC=1m,∵ON⊥BC,∴四边形OHCN是矩形,∴CH=ON=m,OH=CN=m,∴BH=BC-CH=m,∴OB==m,∴在这一过程中,窗框上的点到地面的最大高度为(+1)m,故答案为:(+1).【点睛】本题考查了垂径定理,矩形的性质和判定,勾股定理,掌握知识点是解题关键.16、【分析】先根据题目中提供的三个式子,分别计算的值,用含n的式子表示其规律,再计算S的值即可.【详解】解:∵,∴;∵,∴;∵,∴;……∵,∴;∴.故答案为:【点睛】本题为规律探究问题,难度较大,根据提供的式子发现规律,并表示规律是解题的关键,同时要注意对于式子的理解.17、2【分析】先根据反比例函数图象上点的坐标特征及A,B两点的横坐标,求出A(1,1),B(4,1).再过A,B两点分别作AC⊥x轴于C,BD⊥x轴于D,根据反比例函数系数k的几何意义得出S△AOC=S△BOD=×4=1.根据S四边形AODB=S△AOB+S△BOD=S△AOC+S梯形ABDC,得出S△AOB=S梯形ABDC,利用梯形面积公式求出S梯形ABDC=(BD+AC)•CD=(1+1)×1=2,从而得出S△AOB=2.【详解】解:∵A,B是反比例函数y=在第一象限内的图象上的两点,且A,B两点的横坐标分别是1和4,

∴当x=1时,y=1,即A(1,1),

当x=4时,y=1,即B(4,1).

如图,过A,B两点分别作AC⊥x轴于C,BD⊥x轴于D,则S△AOC=S△BOD=×4=1.

∵S四边形AODB=S△AOB+S△BOD=S△AOC+S梯形ABDC,

∴S△AOB=S梯形ABDC,

∵S梯形ABDC=(BD+AC)•CD=(1+1)×1=2,

∴S△AOB=2.

故答案是:2.【点睛】主要考查了反比例函数y=中k的几何意义,即图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=|k|.18、1【分析】将cos45°=代入进行计算即可.【详解】解:cos45°=故答案为:1.【点睛】此题考查的是特殊角的锐角三角函数值,掌握cos45°=是解决此题的关键.三、解答题(共78分)19、证明见解析;【解析】试题分析:由BE=CF可证得BC=EF,又有AB=DE,AC=DF,根据SSS证得△ABC≌△DEF⇒∠A=∠D.证明:∵BE=CF,∴BC=EF,又∵AB=DE,AC=DF,∴△ABC≌△DEF.∴∠A=∠D.考点:全等三角形的判定与性质.20、(1)12;(2)或.【解析】(1)把点(4,m)代入直线求得m,然后代入与反比例函数,求出k;(2)设点P的纵坐标为y,一次函数与x轴相交于点A,与y轴相交于点C,则A(-2,0),C(0,1),然后根据S△ABP=S△APC+S△BPC列出关于y的方程,解方程求得即可.【详解】解:(1)点在一次函数上,,又点在反比例函数上,;(2)设点的纵坐标为,一次函数与轴相交于点,与轴相交于点,,,又点在轴上,,,即,,或或.【点睛】本题考查的是反比例函数的图象与一次函数图象的交点问题,三角形的面积等知识,求出交点坐标,利用数形结合思想是解题的重点.21、(1)y=﹣x2﹣3x+4;(2)①P(﹣1,6);②点M的坐标为:∴M(﹣1,3+)或(﹣1,3﹣)或(﹣1,﹣1)或(﹣1,).【解析】(1)先根据已知求点A的坐标,利用待定系数法求二次函数的解析式;(2)①先得AB的解析式为:y=-2x+2,根据PD⊥x轴,设P(x,-x2-3x+4),则E(x,-2x+2),根据PE=DE,列方程可得P的坐标;②先设点M的坐标,根据两点距离公式可得AB,AM,BM的长,分三种情况:△ABM为直角三角形时,分别以A、B、M为直角顶点时,利用勾股定理列方程可得点M的坐标.【详解】(1)∵B(1,0),∴OB=1,∵OC=2OB=2,∴C(﹣2,0),Rt△ABC中,tan∠ABC=2,∴=2,∴=2,∴AC=6,∴A(﹣2,6),把A(﹣2,6)和B(1,0)代入y=﹣x2+bx+c得:,解得:,∴抛物线的解析式为:y=﹣x2﹣3x+4;(2)①∵A(﹣2,6),B(1,0),易得AB的解析式为:y=﹣2x+2,设P(x,﹣x2﹣3x+4),则E(x,﹣2x+2),∵PE=DE,∴﹣x2﹣3x+4﹣(﹣2x+2)=(﹣2x+2),x=1(舍)或﹣1,∴P(﹣1,6);②∵M在直线PD上,且P(﹣1,6),设M(﹣1,y),∴AM2=(﹣1+2)2+(y﹣6)2=1+(y﹣6)2,BM2=(1+1)2+y2=4+y2,AB2=(1+2)2+62=45,分三种情况:i)当∠AMB=90°时,有AM2+BM2=AB2,∴1+(y﹣6)2+4+y2=45,解得:y=3,∴M(﹣1,3+)或(﹣1,3﹣);ii)当∠ABM=90°时,有AB2+BM2=AM2,∴45+4+y2=1+(y﹣6)2,y=﹣1,∴M(﹣1,﹣1),iii)当∠BAM=90°时,有AM2+AB2=BM2,∴1+(y﹣6)2+45=4+y2,y=,∴M(﹣1,);综上所述,点M的坐标为:∴M(﹣1,3+)或(﹣1,3﹣)或(﹣1,﹣1)或(﹣1,).【点睛】此题是二次函数的综合题,考查了待定系数法求二次函数的解析式,铅直高度和勾股定理的运用,直角三角形的判定等知识.此题难度适中,解题的关键是注意方程思想与分类讨论思想的应用.22、(1)(-1,8);(2)和;(3)3;(4,0)【分析】(1)利用配方法将一般式转化为顶点式,然后求顶点坐标即可;(2)将y=0代入,求出x的值,即可求出该二次函数图象与轴的交点坐标;(3)根据坐标与图形的平移规律即可得出结论.【详解】解:(1)∴二次函数的顶点坐标为(-1,8);(2)将y=0代入,得解得:∴该二次函数图象与轴的交点坐标为和;(3)∵向右平移3个单位后与原点重合∴该图象向右平移3个单位,可使平移后所得图象经过坐标原点,此时也向右平移了3个单位,平移后的坐标为(4,0)即平移后所得图象与轴的另一个交点的坐标为(4,0)故答案为:3;(4,0).【点睛】此题考查的是求二次函数的顶点坐标、二次函数与x轴的交点坐标和坐标与图形的平移规律,掌握将二次函数的一般式化为顶点式、求二次函数与x轴的交点坐标和坐标与图形的平移规律是解决此题的关键.23、(1)①④;(2);(3)或【分析】(1)根据的“隔离直线”的定义即可解决问题;(2)存在,连接,求得与垂直且过的直接就是“隔离直线”,据此即可求解;(3)分两种情形正方形在x轴上方以及在x轴下方时,分别求出正方形的一个顶点在直线上时的t的值即可解决问题.【详解】(1)根据的“隔离直线”的定义可知,是图1函数的图象与正方形OABC的“隔离直线”;直线也是图1函数的图象与正方形OABC的“隔离直线”;而与不满足图1函数的图象与正方形OABC的“隔离直线”的条件;

故答案为:①④;(2)存在,理由如下:连接,过点作轴于点,如图,在Rt△DGO中,,∵⊙O的半径为,

∴点D在⊙O上.

过点D作DH⊥OD交y轴于点H,

∴直线DH是⊙O的切线,也是△EDF与⊙O的“隔离直线”.设直线OD的解析式为,将点D(2,1)的坐标代入得,解得:,∵DH⊥OD,∴设直线DH的解析式为,将点D(2,1)的坐标代入得,解得:,∴直线DH的解析式为,∴“隔离直线”的表达式为;(3)如图:由题意点F的坐标为(),当直线经过点F时,,

∴,

∴直线,即图中直线EF,

∵正方形A1B1C1D1的中心M(1,t),

过点作⊥y轴于点G,∵点是正方形的中心,且,∴B1C1,,∴正方形A1B1C1D1的边长为2,

当时,,∴点C1的坐标是(),此时直线EF是函数)的图象与正方形A1B1C1D1的“隔离直线”,∴点的坐标是(-1,2),此时;

当直线与只有一个交点时,,消去y得到,由,可得,

解得:,同理,此时点M的坐标为:(),∴,

根据图象可知:当或时,直线是函数)的图象与正方形A1B1C1D1的“隔离直线”.【点睛】本题是二次函数综合题,考查了二次函数的性质、正方形的性质、一次函数的应用、二元二次方程组.一元二次方程的根的判别式等知识,解题的关键是理解题意,灵活运用所学知识解决问题,学会用分类讨论的思想思考问题.24、(1)y=-x2+2x+3;(2)存在,CD的最大值为,C()【分析】(1)已知一次函数的解析式,分别令x、y等于0,可以求出点A、B的坐标,分别代入二次函数解析式,求出b、c,即可求出二次函数的解析式;(2)过点C作y轴的平行线交AB于点E,由△AOB是等腰直角三角形可推出△CDE也为等腰直角三角形,设出点C和点E的坐标,用含x的坐标表式线段CE的长度,再根据CD=,可以用x表示CD的长度,构造二次函数,当x=时,求二次函数的最大值即可.【详解】解:(1)在y=-x+3中,当x=0时,y=3;当y=0时,x=3,可得A(3,0),B(0,3)将A(3,0),B(0,3)代入y=-x2+bx+c,得解得抛物线的解析式为y=-x2+2x+3(2)∵在Rt△AOB中,OA=OB=3,∴∠OAB=∠ABO=45°.过点C作y轴的平行线交AB于点E.∴∠CED=∠ABO=45°,∴在Rt△CDE中,CD=设点C(x,-x2+2x+3),E(x,-x+3),0<x<3,则CE=-x2+2x+3-(-x+3)=-x2+3x=∴当时,CE有最大值,此时CD的最大值=∵当时,,∴C()【点睛】本题主要考查了二次函数解析式的求法以及用点的坐标表示线段长度,能够合理的构造二次函数是解决本题的关键.25、(1)x1=7,x2=-1;(2)x1=2,x2=-1【分析】(1)根据配方法法即可求出答案.(2)根据直接开方法即可求出答案;【详解】解:(1)x2-6x+1-1-7=0(x-3)2=16x-3=±4x1=7,x2=-1(2)2x-1=±32x=1±3x1=2,x2=-1【点睛】本题考查了解一元二次方程,观察所给方程的形式,分别使用配方法和直接开方法求解.26、(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论