版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
活用几何基本图形,解题事半功倍几何题目图形千变万化,但有一些经典图形经常在这些题目里直接或间接到的出现.因此,灵活掌握和运用这些图形是学好几何的必备技能.一、基本图形1.“8字”形结论:∠A+∠B=∠C+∠D;2.双垂直结论:∠CAD=∠CBE;结论:∠A=∠BCD,∠B=∠ACD;结论:∠CAD=∠CBE.3.与角平分线有关的三个重要结论(1)双内角平分线条件:∠1=∠2,∠3=∠4,结论:∠BOC=90°+∠A;证明:∠A+∠ABC+∠ACB=180°,∠BOC+∠2+∠4=180°,即:∠A+2∠2+2∠4=180°,∠2+∠4=90°-∠A,∴∠BOC=180°-(∠2+∠4)=90°+∠A;(2)一内角平分线,一外角平分线条件:∠1=∠2,∠3=∠4,结论:∠O=∠A;证明:∠4=∠2+∠O,2∠4=2∠2+∠A,可得:∠O=∠A;(3)双外角平分线条件:∠1=∠2,∠3=∠4,结论:∠BOC=90°-∠A;证明:∠A+∠ABC+∠ACB=180°,∠BOC+∠2+∠4=180°,即:∠A+180°-2∠2+180°-2∠4=180°,∠2+∠4=90°+∠A,∴∠BOC=180°-(∠2+∠4)=90°-∠A;4.四边形外角∠1与∠2是四边形ABCD的外角,结论:∠1+∠2=∠A+∠B;5.飞镖模型∠BOC=∠A+∠B+∠C6.与面积相关如上图所示,D、E、F分别是△ABC各边的中点结论:图中,S△AOF=S△AOE=S△BOF=S△COE=S△BOD=S△COD二、典例解析【例1-1】(安徽淮南月考)如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,如果∠ABP=20°,∠ACP=50°,则∠A=().A.60° B.80° C.70° D.50°A解:∵BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,∠ABP=20°,∠ACP=50°,
∴∠ABC=2∠ABP=40°,∠ACM=2∠ACP=100°,
∴∠A=∠ACM-∠ABC=60°故答案为A.【例1-2】(平原县月考)如图,在四边形ABCD中,∠A+∠D=α,∠ABC的平分线与∠BCD的平分线交于点P,则∠P=()A.90°-α B.90°+α C.α D.360°-αC解:由四边形的内角和定理知:∠ABC+∠BCD=360°-(∠A+∠D)=360°-α,由角平分线的定义可得:∠PBC+∠PCB=,∴∠P=,故答案为C.【变式1-1】(陕西西安·高新一中月考)已知,如图,∠XOY=90°,点A、B分别在射线OX、OY上移动,BE是∠ABY的平分线,BE的反向延长线与∠OAB的平分线相交于点C,试问∠ACB的大小是否发生变化?如果保持不变,请给出证明;如果随点A、B移动发生变化,请求出变化范围.∠ACB的大小始终保持45°.解:作∠ABO的平分线交AC于点D,则∠BDA=180°-(∠DAB+∠DBA)=180°-(∠OAB+∠OBA)=135°,因为BD,BE分别是∠OBA和∠YBA的平分线,所以BD⊥CB,所以∠ACB=∠BDA-∠DBC=135°-90°=45°.即∠ACB的大小始终为45°.【变式1-2】(武城县月考)如图①,△ABC中,BD平分∠ABC,且与△ABC的外角∠ACE的角平分线交于点D.(1)若∠ABC=75°,∠ACB=45°,求∠D的度数;(2)若把∠A截去,得到四边形MNCB,如图②,猜想∠D、∠M、∠N的关系,并说明理由.(1)∠D=30°;(2)∠D=(∠M+∠N﹣180°);解:(1)∵∠ACE=∠A+∠ABC,∴∠ACD+∠ECD=∠A+∠ABD+∠DBE,∠DCE=∠D+∠DBC,又BD平分∠ABC,CD平分∠ACE,∴∠ABD=∠DBE,∠ACD=∠ECD,∴∠A=2(∠DCE−∠DBC),∠D=∠DCE−∠DBC,∴∠A=2∠D,∵∠ABC=75°,∠ACB=45°∴∠A=60°∠D=30°(2)理由:延长BM、CN交于点A,则∠A=∠BMN+∠CNM-180°∴∠D=∠A=(∠M+∠N-180°).【例2-1】(广东模考)如图所示,∠的度数是()A.10° B.20° C.30° D.40°A.解:如图:∠1=30°+20°=40+∠,则∠=10°,故答案为A.【例2-2】(霍林郭勒市月考)如图1所示,称“对顶三角形”,其中,∠A+∠B=∠C+∠D利用这个结论,完成下列填空.(1)如图(2),∠A+∠B+∠C+∠D+∠E=;(2)如图(3),∠A+∠B+∠C+∠D+∠E=;(3)如图(4),∠1+∠2+∠3+∠4+∠5+∠6=;(4)如图(5),∠1+∠2+∠3+∠4+∠5+∠6+∠7=.(1)180°,(2)180°,(3)360°,(4)540°解:如图:(1)∵∠1,∠2的和与∠D,∠E的和相等,∴∠A+∠B+∠C+∠D+∠E=∠A+∠B+∠C+∠1+∠2=180°;故180°;(2)∵∠1,∠2的和与∠D,∠E的和相等,∴∠A+∠B+∠C+∠D+∠E=∠A+∠B+∠C+∠1+∠2=180°;故180°;(3)∵∠1,∠2的和与∠7,∠8的和相等,∴∠1+∠2+∠3+∠4+∠5+∠6=∠7+∠8+∠3+∠4+∠5+∠6=360°;故360°;(4)∵∠6,∠7的和与∠8,∠9的和相等,∴∠1+∠2+∠3+∠4+∠5+∠6+∠7=∠1+∠2+∠3+∠4+∠5+∠8+∠9=540°.故540°【变式1-1】(1)如图1我们称之为“8字形”,请直接写出∠A,∠B,∠C,∠D之间的数量关系:;(2)如图2,∠1+∠2+∠3+∠4+∠5+∠6+∠7=度;(3)如图3所示,已知∠1=∠2,∠3=∠4,猜想∠B,∠P,∠D之间的数量关系,并证明.(1)∠A+∠B=∠C+∠D;(2)540°;(3)2∠P=∠D+∠B.解:(1)∵∠A+∠D+∠AOD=∠C+∠B+∠BOC=180°,∠AOD=∠BOC,∴∠A+∠B=∠C+∠D,故∠A+∠B=∠C+∠D;(2)如图,∵∠6,∠7的和与∠8,∠9的和相等,∴∠1+∠2+∠3+∠4+∠5+∠6+∠7=∠1+∠2+∠3+∠4+∠5+∠8+∠9=540°;(3)∠DAP+∠D=∠P+∠DCP,①∠PCB+∠B=∠PAB+∠P,②∵∠DAB和∠BCD的平分线AP和CP相交于点P,∴∠DAP=∠PAB,∠DCP=∠PCB,①+②得:∠DAP+∠D+∠PCB+∠B=∠P+∠DCP+∠PAB+∠P,即2∠P=∠D+∠B.【变式1-2】(广东广州月考)如图,已知BC与DE交于点M,则∠A+∠B+∠C+∠D+∠E+∠F的度数为_______.360°解:连接BE.∵△CDM和△BEM中,∠DMC=∠BME,∴∠C+∠D=∠MBE+∠BEM,∴∠A+∠B+∠C+∠D+∠E+∠F=∠A+∠B+∠MBE+∠BEM+∠E+∠F=∠A+∠F+∠ABE+∠BEF=360°.故360°.【例3】(安徽淮南月考)某零件如图所示,图纸要求∠A=90°,∠B=32°,∠C=21°,当检验员量得∠BDC=145°,就断定这个零件不合格,你能说出其中的道理吗?这个零件不合格.理由见解析.解:如图,连接AD并延长,∴∠1=∠B+∠BAD,∠2=∠C+∠CAD,∵∠A=90°,∠B=32°,∠C=21°,∴∠BDC=∠1+∠2,=∠B+∠BAD+∠DAC+∠C,=∠B+∠BAC+∠C,=32°+90°+21°,=143°,∵143°≠145°,∴这个零件不合格.【变式3-1】(山西盐湖期末)探究与发现:如图1所示的图形,像我们常见的学习用品--圆规.我们不妨把这样图形叫做“规形图”,(1)观察“规形图”,试探究∠BDC与∠A、∠B、∠C之间的关系,并说明理由;(2)请你直接利用以上结论,解决以下三个问题:①如图2,把一块三角尺XYZ放置在△ABC上,使三角尺的两条直角边XY、XZ恰好经过点B、C,∠A=40°,则∠ABX+∠ACX等于多少度;
②如图3,DC平分∠ADB,EC平分∠AEB,若∠DAE=40°,∠DBE=130°,求∠DCE的度数;
③如图4,∠ABD,∠ACD的10等分线相交于点G1、G2…、G9,若∠BDC=133°,∠BG1C=70°,求∠A的度数.见解析.解:(1)如图,连接AD并延长至点F,可得∠BDF=∠BAD+∠B,∠CDF=∠C+∠CAD,∵∠BDC=∠BDF+∠CDF,∠BAC=∠BAD+∠CAD,∴∠BDC=∠A+∠B+∠C;(2)①由(1),可得:∠ABX+∠ACX+∠A=∠BXC,∵∠A=40°,∠BXC=90°,∴∠ABX+∠ACX=90°-40°=50°;②由(1),可得∠DBE=∠DAE+∠ADB+∠AEB,∴∠ADB+∠AEB=∠DBE-∠DAE=130°-40°=90°,∴(∠ADB+∠AEB)=90°÷2=45°,∵DC平分∠ADB,EC平分∠AEB,∴,,∴∠DCE=∠ADC+∠AEC+∠DAE,=(∠ADB+∠AEB)+∠DAE=85°;③由②得∠BG1C=(∠ABD+∠ACD)+∠A,∵∠BG1C=70°,设∠A为x°,∵∠ABD+∠ACD=133°-x°∴(133-x)+x=70,∴13.3-x+x=70,解得x=63,即∠A的度数为63°.【变式3-2】(山东岱岳期末)如图1六边形的内角和为度,如图2六边形的内角和为度,则________.0解:如图1所示,∴m=∠1+∠2+∠3+∠4+∠5+∠6=180°×2+360°=720°如图2所示,∴n=∠1+∠2+∠3+∠4+∠5+∠6=180°×4=720°∴m-n=0故答案为0.【例4】(唐山市月考)如图所示,在△ABC中,已知点D,E,F分别是BC,AD,CE的中点,S△ABC=4平方厘米,则S△BEF的值为( )A.2平方厘米 B.1平方厘米C.平方厘米 D.平方厘米B.解:∵D是BC的中点,∴S△ABD=S△ACD=S△ABC=×4=2cm2,∵E是AD的中点,∴S△BDE=S△CDE=×2=1cm2,∴S△BEF=(S△BDE+S△CDE)=×(1+1)=1cm2.故答案为B.【变式4-1】(山东历下期中)如图,△ABC的面积为.第一次操作:分别延长,,至点,,,使,,,顺次连接,,,得到△.第二次操作:分别延长,,至点,,,使,,,顺次连接,,,得到△,…按此规律,要使得到的三角形的面积超过2020,最少经过多少次操作()A. B. C. D.A.解:连接A1C,如图,∵AB=A1B,∴△ABC与△A1BC的面积相等,∵△ABC面积为1,∴=1.∵BB1=2BC,∴=2,同理可得,=2,=2,∴=2+2+2+1=7;△A2B2C2的面积=7×△A1B1C1的面积=49,第三次操作后的面积为7×49=343,第四次操作后的面积为7×343=2401.故按此规律,要使得到的三角形的面积超过2020,最少经过4次操作.故A.【变式4-2】(台州市月考)在四边形ABCD中,P是AD边上任意一点,当AP=AD时,与和之间的关系式为:________________;一般地,当AP=AD(n表示正整数)时,与和之间关系式为:________________.;解:∵AP=AD,△ABP和△ABD的高相等,∴,∵PD=AD-AP=AD,△CDP和△CDA的高相等,∴S△CDP=S△CDA,∴;当AP=AD(n表示正整数)时,∵AP=AD,△ABP和△ABD的高相等,∴,∵PD=AD-AP=AD,△CDP和△CDA的高相等,∴,∴;故;.【例5】(庆云县月考)探究与发现:(探究一)我们知道,三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在何种数量关系呢?已知:如图①,∠FDC与∠ECD分别为ADC的两个外角,试探究∠A与∠FDC+∠ECD的数量关系,并证明你探究的数量关系.(探究二)三角形的一个内角与另两个内角的平分线所夹的钝角之间有何种关系?已知:如图②,在ADC中,DP、CP分别平分∠ADC和∠ACD,试探究∠A与∠P的数量关系,并证明你探究的数量关系.(探究三)若将ADC改成任意四边形ABCD呢?已知:如图3,在四边形ABCD中,DP、CP分别平分∠ADC和∠BCD,试利用上述结论直接写出∠A+∠B与∠P的数量关系.见解析.解:探究一:∵∠FDC=∠A+∠ACD,∠ECD=∠A+∠ADC,∴∠FDC+∠ECD=∠A+∠ACD+∠A+∠ADC=180°+∠A;探究二:∵DP、CP分别平分∠ADC和∠ACD,∴∠PDC=∠ADC,∠PCD=∠ACD,∴∠P=180°﹣∠PDC﹣∠PCD=180°﹣∠ADC﹣∠ACD=180°﹣(∠ADC+∠ACD)=180°﹣(180°﹣∠A)=90°+∠A;探究三:∵DP、CP分别平分∠ADC和∠BCD,∴∠PDC=∠ADC,∠PCD=∠BCD,∴∠P=180°﹣∠PDC﹣∠PCD=180°﹣∠ADC﹣∠BCD=180°﹣(∠ADC+∠BCD)=180°﹣(360°﹣∠A﹣∠B)=(∠A+∠B).故探究一:∠FDC+∠ECD=180°+∠A;探究二:∠P=90°+∠A;探究三:∠P=(∠A+∠B).【变式5-1】(河南宛城月考)问题情景:如图1,中,有一块直角三角板放置在上(点在内),使三角板的两条直角边恰好分别经过点和点.试问与是否存在某种确定的数量关系?(1)特殊探究:若,则________度,_________度,_________度;(2)类比探索:请探究与的关系;(3)类比延伸:如图2,改变直角三角板的位置;使点在外,三角板的两条直角边仍然分别经过点和点,(2)中的结论是否仍然成立?若不成立,请直接写出你的结论.(1)130,90,40;(2)∠ABP+∠ACP=90°-∠A,理由见解析;(3)不成立,∠ACP-∠ABP=90°-∠A解:(1)∵∠A=50°,∴∠ABC+∠ACB=180°-50°=130°,∵∠P=90°,∴∠PBC+∠PCB=90°,∴∠ABP+∠ACP=130°-90°=40°.故130,90,40;(2)结论:∠ABP+∠ACP=90°-∠A.证明:∵90°+(∠ABP+∠ACP)+∠A=180°,∴∠ABP+∠ACP+∠A=90°,∴∠ABP+∠ACP=90°-∠A.(3)不成立;
存在∠ACP-∠ABP=90°-∠A.理由:△ABC中,∠ABC+∠ACB=180°-∠A,∵∠MPN=90°,∴∠PBC+∠PCB=90°,∴(∠ABC+∠ACB)-(∠PBC+∠PCB)=180°-∠A-90°,即∠ABC+∠ACP+∠PCB-∠ABP-∠ABC-∠PCB=90°-∠A,∴∠ACP-∠ABP=90°-∠A.【变式5-2】(吉林宽城期末)将三角形纸片沿折叠,使点落在点处.(感知)如图①,若点落在四边形的边上,则与之间的数量关系是.(探究)如图②,若点落在四边形的内部,则与之间存在怎样的数量关系?请说明理由.(拓展)如图③,若点落在四边形的外部,,,则的大小为度.感知:∠1=2∠A;探究:2∠A=∠1+∠2,理由见解析;拓展:28解:【感知】根据外角定理,易得【探究】2∠A=∠1+∠2.理由:连结AA’,∵∠1=∠DAA’+∠DA’A,∠2=∠EAA’+∠EA’A,∴∠1+∠2=∠DAE+∠DA’E,由翻折,得∠DAE=∠DA’E∴2∠DAE=∠1+∠2∴2∠A=∠1+∠2【拓展】∵∠1=80°∴∠ADE=∠EDA’=50°设∠DEB=x,由∠2=24°,则∠AED=x+24°∴x+x+24=180°∴x=78°∴∠A=78°-50°=28°故为28度.三、习题专练1.(安徽淮南月考)如图,∠A+∠B+∠C+∠D+∠E+∠F=_____.360°解:如图所示,∵∠1=∠A+∠B,∠2=∠C+∠D,∠3=∠E+∠F,∴∠1+∠2+∠3=∠A+∠B+∠C+∠D+∠E+∠F,又∵∠1、∠2、∠3是三角形的三个不同的外角,∴∠1+∠2+∠3=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.故答案为360°.2.(惠州市光正实验学校月考)如图,在四边形ABCD中,∠ABC与∠BCD的平分线的交点E恰好在AD边上,则∠BEC=()A.∠A+∠D﹣45° B.(∠A+∠D)+45°C.180°﹣(∠A+∠D) D.∠A+∠DD解:∵四边形的内角和=360°,∴∠ABC+∠BCD=360°﹣(∠A+∠D),∵∠ABC与∠BCD的平分线的交点E恰好在AD边上,∴∴∴∠BEC=180°﹣(∠EBC+∠ECB)故答案为D.3.(山东潍坊期末)如图,点D是△ABC的边BC的延长线上的一点,∠ABC的平分线与∠ACD的平分线交于点A1,∠A1BC的平分线与∠A1CD的平分线交于点A2,依此类推…,已知∠A=α,则∠A2020的度数为_____.(用含α的代数式表示).α解:在△ABC中,∠A=∠ACD﹣∠ABC=α,∵∠ABC的平分线与∠ACD的平分线交于点A1,∴∠A1=∠A1CD﹣∠A1BC=(∠ACD﹣∠ABC)=∠A=α,同理可得∠A2=∠A1=α,∠A3=∠A2=α,…以此类推,∠A2020=α,故α.4.(信阳市月考)如图,BE、CF是△ABC的角平分线,∠BAC=80°,BE、CF相交于D,则∠BDC的度数是_______.130°.解:∠BDC=90°+∠BAC=130°.5.(惠州市月考)如图,∠A+∠B+∠C+∠D+∠E=___________________度.180.解:∵∠2是△OBC的外角,∴∠B+∠C=∠2,∵∠1是△AEF的外角,∴∠A+∠E=∠1,∵∠1+∠2+∠D=180°,∴∠A+∠B+∠C+∠D+∠E=180°.故答案是:180.6.(商城县月考)如图,△ABC的两个内角平分线相交于点P,过点P向AB,AC两边作垂直线l1、l2,若∠1=40°,则∠BPC=_________.110°.解:如下图所示:∠MPN=180°-∠1=140°,四边形AMPN中,∠A=360°-90°-90°-140°=40°,∵PC、PB分别是∠ACB和∠ABC的角平分线,∴∠2+∠3=∠ACB+∠ABC=(∠ACB+∠ABC)=(180°-∠A)=×140°=70°,∴在△PBC中,∠CPB=180°-(∠2+∠3)=110°,故110°.7.(临沭县月考)如图,∠1+∠2+∠3+∠4+∠5+∠6+∠7=_____.540°.解:由三角形的外角性质可知∠6+∠7=∠8,∴∠1+∠2+∠3+∠4+∠5+∠6+∠7=∠1+∠2+∠3+∠4+∠5+∠8,又∵∠1+∠2+∠3+∠10=360°,∠4+∠5+∠8+∠9=360°,∠10+∠9=180°,∴∠1+∠2+∠3+∠4+∠5+∠8=(∠1+∠2+∠3+∠10)+(∠4+∠5+∠8+∠9)-(∠10+∠9)=540°.8.(霍林郭勒市月考)如图,BA1和CA1分别是△ABC的内角平分线和外角平分线,BA2是∠A1BD的角平分线,CA2是∠A1CD的角平分线,BA3是∠A2BD的角平分线,CA3是∠A2CD的角平分线,若∠A1=α,则∠A2018为_____.解:∵A1B是∠ABC的平分线,A1C是∠ACD的平分线,∴∠A1BC=∠ABC,∠A1CD=∠ACD,又∵∠ACD=∠A+∠ABC,∠A1CD=∠A1BC+∠A1,∴(∠A+∠ABC)=∠ABC+∠A1,∴∠A1=∠A,∵∠A1=α,同理理可得∠A2=∠A1=α,则∠A2018=.故.9.(四川师范大学附属中学期中)如图,已知△ABC中,∠A=60°,点O为△ABC内一点,且∠BOC=140°,其中O1B平分∠ABO,O1C平分∠ACO,O2B平分∠ABO1,O2C平分∠ACO1,…,OnB平分∠ABOn﹣1,OnC平分∠ACOn﹣1,…,以此类推,则∠BO1C=_____°,∠BO2017C=_____°.100;[60+()2017×80].解:如图,∵∠BOC=140°,∴∠1+∠2=180°﹣140°=40°.∴∠ABO+∠ACO=180°﹣60°﹣40°=80°∵点O1是∠ABC与∠ACB的角平分线的交点,∴∠BO1C=180°﹣(×80°+40°)=100°.∴∠BO2C=180°﹣[120°﹣(∠ABO2+∠ACO2)=80°.依次类推,∠BO2017C=180°﹣[120°﹣()2017×80°]=60°+()2017×80°故100,[60+()2017×80].10.(重庆月考)如图,分别为四边形的边的中点,并且图中四个小三角形的面积之和为,即,则图中阴影部分的面积为____.1解:如图,连接AC、BD,∵E、F、G、H分别为AB、BC、CD、DA的中点,∴S△BCE=S△ACE,S△ADG=S△ACG,S△ABH=S△DBH,S△CDF=S△BDF,∴S△BCE+S△ADG=S△DBH+S△BDF=S四边形ABCD,∴S1+S四边形BMNF+S4+S2+S四边形HQPD+S3=S四边形BMNF+S阴影+S四边形HQPD,∴S1+S4+S2+S3=S阴影,∵S1+S2+S3+S4=1,∴S阴影=1.故1.11.(江苏邗江期末)(1)如图1,AB∥CD,点E是在AB、CD之间,且在BD的左侧平面区域内一点,连结BE、DE.求证:∠E=∠ABE+∠CDE.(2)如图2,在(1)的条件下,作出∠EBD和∠EDB的平分线,两线交于点F,猜想∠F、∠ABE、∠CDE之间的关系,并证明你的猜想.(3)如图3,在(1)的条件下,作出∠EBD的平分线和△EDB的外角平分线,两线交于点G,猜想∠G、∠ABE、∠CDE之间的关系,并证明你的猜想.(1)见解析(2)见解析(3)2∠G=∠ABE+∠CDE解:(1)如图,过点E作EH∥AB,∴∠BEH=∠ABE,∵EH∥AB,CD∥AB,∴EH∥CD,∴∠DEH=∠CDE,∴∠BED=∠BEH+∠DEH=∠ABE+∠CDE;(2)2∠F-(∠ABE+∠CDE)=180°,理由:由(1)知,∠BED=∠ABE+∠CDE,∵∠EDB+∠EBD+∠BED=180°,∴∠EBD+∠EDB=180°-∠BED=180°-(∠ABE+∠CDE),∵BF,DF分别是∠DBE,∠BDE的平分线,∴∠EBD=2∠DBF,∠EDB=2∠BDF,∴2∠DBF+2∠BDF=180°-(∠ABE+∠CDE),∴∠DBF+∠BDF=90°-(∠ABE+∠CDE),在△BDF中,∠F=180°-(∠DBF+∠BDF)=180°-[90°-(∠ABE+∠CDE)]=90°+(∠ABE+∠CDE),即:2∠F-(∠ABE+∠CDE)=180°;(3)2∠G=∠ABE+∠CDE,理由:由(1)知,∠BED=∠ABE+∠CDE,∵BG是∠EBD的平分线,∴∠DBE=2∠DBG,∵DG是∠EDP的平分线,∴∠EDP=2∠GDP,∴∠BED=∠EDP-∠DBE=2∠GDP-2∠DBG=2(∠GDP-∠DBG),∴∠GDP-∠DBG=∠BED=(∠ABE+∠CDE)∴∠G=∠GDP-∠DBG=(∠ABE+∠CDE),∴2∠G=∠ABE+∠CDE.12.(莆田月考)如图,点D为△ABC的边BC的延长线上一点.(1)若∠A∶∠ABC=3∶4,∠ACD=140°,求∠A的度数;(2)若∠ABC的平分线与∠ACD的平分线交于点M,过点C作CP⊥BM于点P.试探究∠PCM与∠A的数量关系.见解析.解:(1)∵∠A∶∠ABC=3∶4,设∠A=3k,∠ABC=4k.∵∠ACD=∠A+∠ABC=140°,∴3k+4k=140°,解得k=20°,∴∠A=3k=60°.(2)∵∠MCD是△MBC的外角,∴∠M=∠MCD-∠MBC.同理可得:∠A=∠ACD-∠ABC.∵MC,MB分别平分∠ACD,∠ABC,∴.∵CP⊥BM,∴∠PCM=90°-∠A.13.(全国月考)如图,四边形ABCD中,BE、DF分别平分四边形的外角∠MBC和∠NDC,若∠BAD=α,∠BCD=β.(1)如图①,若α+β=150°,求∠MBC+∠NDC的度数;(2)如图①,若BE与DF相交于点G,∠BGD=30°,请写出α、β所满足的等量关系式;(3)如图②,若α=β,判断BE、DF的位置关系,并说明理由.(1)150°;(2)β﹣α=60°;(3)BE∥DF,理由见解析(1)解:(1)在四边形ABCD中,∠BAD+∠ABC+∠BCD+∠ADC=360°,∴∠ABC+∠ADC=360°-(α+β),∵∠MBC+∠ABC=180°,∠NDC+∠ADC=180°∴∠MBC+∠NDC=180°-∠ABC+180°-∠ADC=360°-(∠ABC+∠ADC)=360°-[360°-(α+β)]=α+β,∵α+β=150°,∴∠MBC+∠NDC=150°;(2)β﹣α=60°理由:连接BD,由(1)得,∠MBC+∠NDC=α+β,∵BE、DF分别平分四边形的外角∠MBC和∠NDC,∴∠CBG=∠MBC,∠CDG=∠NDC,∴∠CBG+∠CDG=∠MBC+∠NDC=(∠MBC+∠NDC)=(α+β),在BCD中,∠BDC+∠CDB=180°﹣∠BCD=180°﹣β,在BDG中,∠GBD+∠GDB+∠BGD=180°,∴∠CBG+∠CBD+∠CDG+∠BDC+∠BGD=180°,(∠CBG+∠CDG)+(∠BDC+∠CDB)+∠BGD=180°,(α+β)+180°﹣β+30°=180°,∴β﹣α=60°;(3)平行,理由:延长BC交DF于H,由(1),∠MBC+∠NDC=α+β,∵BE、DF分别平分四边形的外角∠MBC和∠NDC,∴∠CBE=∠MBC,∠CDH=∠NDC,∴∠CBE+∠CDH=∠MBC+∠NDC=(∠MBC+∠NDC)=(α+β),∵∠BCD=∠CDH+∠DHB,∴∠CDH=∠BCD﹣∠DHB=β﹣∠DHB,∴∠CBE+β﹣∠DHB=(α+β),∵α=β,∴∠CBE+β﹣∠DHB=(β+β)=β,∴∠CBE=∠DHB,∴BE∥DF.14.(贵州赫章期末)数学问题:如图,在中,的等分线分别交于点根据等分线等分角的情况解决下列问题:(1)求的度数.(2)求的度数.(3)直接写出的度数.见解析.解:(1)∵,∴
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年高二化学选择性必修2(人教版)同步课件 第二章 第一节 第1课时 共价键
- 【+初中语文+】课外古诗词诵读《+送元二使安西+》课件+统编版语文六年级(五四学制)上册
- 广东省佛山市南海区九江镇儒林实验学校2024-2025学年七年级上学期12月学程调查历史试题(无答案)
- 新浪微博营销案例大全(不可不看)
- 医学教材 产科常见并发症学习资料
- 海尔终端SBU系列培训-顾客满意与顾客抱怨正确应对的方法
- 3.4 用电路实现加法运算
- 国有企业2024年度意识形态工作总结
- 浙江省宁波市九校2023-2024学年高三上学期语文期末联考试卷1
- 年度合格供方名单
- 制冷剂与载冷剂课件
- 办公室消毒操作规程
- NB-T+25046-2015核电厂水工设计规范
- 纪念白求恩课件8省公开课一等奖新名师课比赛一等奖课件
- 人教版八年级上册物理期末复习知识点总结填空版
- JT-T-1202-2018城市公共汽电车场站配置规范
- 旋挖成孔灌注桩施工安全技术规程
- 2024年高考时事政治考试题库(134题)
- FZ∕T 95021-2014 热定形机导轨
- 2024年选调生考试(公共基础知识)综合能力题库带答案
- 水库移民试点方案
评论
0/150
提交评论