版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023学年高考数学模拟测试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若,则下列关系式正确的个数是()①②③④A.1 B.2 C.3 D.42.某几何体的三视图如图所示,则该几何体的最长棱的长为()A. B. C. D.3.已知的内角、、的对边分别为、、,且,,为边上的中线,若,则的面积为()A. B. C. D.4.设a,b∈(0,1)∪(1,+∞),则"a=b"是"logA.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件5.我国古代数学家秦九韶在《数书九章》中记述了“三斜求积术”,用现代式子表示即为:在中,角所对的边分别为,则的面积.根据此公式,若,且,则的面积为()A. B. C. D.6.已知双曲线的一条渐近线经过圆的圆心,则双曲线的离心率为()A. B. C. D.27.一个几何体的三视图及尺寸如下图所示,其中正视图是直角三角形,侧视图是半圆,俯视图是等腰三角形,该几何体的表面积是()A.B.C.D.8.函数(其中是自然对数的底数)的大致图像为()A. B. C. D.9.复数满足为虚数单位),则的虚部为()A. B. C. D.10.将函数图象上所有点向左平移个单位长度后得到函数的图象,如果在区间上单调递减,那么实数的最大值为()A. B. C. D.11.执行如图所示的程序框图,如果输入,则输出属于()A. B. C. D.12.已知若在定义域上恒成立,则的取值范围是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.如图,在平行四边形中,,,则的值为_____.14.已知函数,若关于x的方程有且只有两个不相等的实数根,则实数a的取值范围是_______________.15.已知点P是直线y=x+1上的动点,点Q是抛物线y=x2上的动点.设点M为线段PQ的中点,O为原点,则16.若,且,则的最小值是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)选修4-5:不等式选讲已知函数(Ⅰ)解不等式;(Ⅱ)对及,不等式恒成立,求实数的取值范围.18.(12分)设实数满足.(1)若,求的取值范围;(2)若,,求证:.19.(12分)设椭圆的右焦点为,过的直线与交于两点,点的坐标为.(1)当直线的倾斜角为时,求线段AB的中点的横坐标;(2)设点A关于轴的对称点为C,求证:M,B,C三点共线;(3)设过点M的直线交椭圆于两点,若椭圆上存在点P,使得(其中O为坐标原点),求实数的取值范围.20.(12分)已知函数.(1)求函数的单调区间;(2)当时,如果方程有两个不等实根,求实数t的取值范围,并证明.21.(12分)这次新冠肺炎疫情,是新中国成立以来在我国发生的传播速度最快、感染范围最广、防控难度最大的一次重大突发公共卫生事件.中华民族历史上经历过很多磨难,但从来没有被压垮过,而是愈挫愈勇,不断在磨难中成长,从磨难中奋起.在这次疫情中,全国人民展现出既有责任担当之勇、又有科学防控之智.某校高三学生也展开了对这次疫情的研究,一名同学在数据统计中发现,从2020年2月1日至2月7日期间,日期和全国累计报告确诊病例数量(单位:万人)之间的关系如下表:日期1234567全国累计报告确诊病例数量(万人)1.41.72.02.42.83.13.5(1)根据表中的数据,运用相关系数进行分析说明,是否可以用线性回归模型拟合与的关系?(2)求出关于的线性回归方程(系数精确到0.01).并预测2月10日全国累计报告确诊病例数.参考数据:,,,.参考公式:相关系数回归方程中斜率和截距的最小二乘估计公式分别为:,.22.(10分)已知点,若点满足.(Ⅰ)求点的轨迹方程;(Ⅱ)过点的直线与(Ⅰ)中曲线相交于两点,为坐标原点,求△面积的最大值及此时直线的方程.
2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【答案解析】
a,b可看成是与和交点的横坐标,画出图象,数形结合处理.【题目详解】令,,作出图象如图,由,的图象可知,,,②正确;,,有,①正确;,,有,③正确;,,有,④正确.故选:D.【答案点睛】本题考查利用函数图象比较大小,考查学生数形结合的思想,是一道中档题.2、D【答案解析】
先根据三视图还原几何体是一个四棱锥,根据三视图的数据,计算各棱的长度.【题目详解】根据三视图可知,几何体是一个四棱锥,如图所示:由三视图知:,所以,所以,所以该几何体的最长棱的长为故选:D【答案点睛】本题主要考查三视图的应用,还考查了空间想象和运算求解的能力,属于中档题.3、B【答案解析】
延长到,使,连接,则四边形为平行四边形,根据余弦定理可求出,进而可得的面积.【题目详解】解:延长到,使,连接,则四边形为平行四边形,则,,,在中,则,得,.故选:B.【答案点睛】本题考查余弦定理的应用,考查三角形面积公式的应用,其中根据中线作出平行四边形是关键,是中档题.4、A【答案解析】
根据题意得到充分性,验证a=2,b=1【题目详解】a,b∈0,1∪1,+∞,当"a=b当logab=log故选:A.【答案点睛】本题考查了充分不必要条件,意在考查学生的计算能力和推断能力.5、A【答案解析】
根据,利用正弦定理边化为角得,整理为,根据,得,再由余弦定理得,又,代入公式求解.【题目详解】由得,即,即,因为,所以,由余弦定理,所以,由的面积公式得故选:A【答案点睛】本题主要考查正弦定理和余弦定理以及类比推理,还考查了运算求解的能力,属于中档题.6、B【答案解析】
求出圆心,代入渐近线方程,找到的关系,即可求解.【题目详解】解:,一条渐近线,故选:B【答案点睛】利用的关系求双曲线的离心率,是基础题.7、D【答案解析】
由三视图可知该几何体的直观图是轴截面在水平面上的半个圆锥,表面积为,故选D.8、D【答案解析】由题意得,函数点定义域为且,所以定义域关于原点对称,且,所以函数为奇函数,图象关于原点对称,故选D.9、C【答案解析】
,分子分母同乘以分母的共轭复数即可.【题目详解】由已知,,故的虚部为.故选:C.【答案点睛】本题考查复数的除法运算,考查学生的基本运算能力,是一道基础题.10、B【答案解析】
根据条件先求出的解析式,结合三角函数的单调性进行求解即可.【题目详解】将函数图象上所有点向左平移个单位长度后得到函数的图象,则,设,则当时,,,即,要使在区间上单调递减,则得,得,即实数的最大值为,故选:B.【答案点睛】本小题主要考查三角函数图象变换,考查根据三角函数的单调性求参数,属于中档题.11、B【答案解析】
由题意,框图的作用是求分段函数的值域,求解即得解.【题目详解】由题意可知,框图的作用是求分段函数的值域,当;当综上:.故选:B【答案点睛】本题考查了条件分支的程序框图,考查了学生逻辑推理,分类讨论,数学运算的能力,属于基础题.12、C【答案解析】
先解不等式,可得出,求出函数的值域,由题意可知,不等式在定义域上恒成立,可得出关于的不等式,即可解得实数的取值范围.【题目详解】,先解不等式.①当时,由,得,解得,此时;②当时,由,得.所以,不等式的解集为.下面来求函数的值域.当时,,则,此时;当时,,此时.综上所述,函数的值域为,由于在定义域上恒成立,则不等式在定义域上恒成立,所以,,解得.因此,实数的取值范围是.故选:C.【答案点睛】本题考查利用函数不等式恒成立求参数,同时也考查了分段函数基本性质的应用,考查分类讨论思想的应用,属于中等题.二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】
根据ABCD是平行四边形可得出,然后代入AB=2,AD=1即可求出的值.【题目详解】∵AB=2,AD=1,∴=1﹣4=﹣1.故答案为:﹣1.【答案点睛】本题考查了向量加法的平行四边形法则,相等向量和相反向量的定义,向量数量积的运算,考查了计算能力,属于基础题.14、【答案解析】
画出函数的图象,再画的图象,求出一个交点时的的值,然后平行移动可得有两个交点时的的范围.【题目详解】函数的图象如图所示:因为方程有且只有两个不相等的实数根,所以图象与直线有且只有两个交点即可,当过点时两个函数有一个交点,即时,与函数有一个交点,由图象可知,直线向下平移后有两个交点,可得,故答案为:.【答案点睛】本题主要考查了方程的跟与函数的图象交点的转化,数形结合的思想,属于中档题.15、3【答案解析】
过点Q作直线平行于y=x+1,则M在两条平行线的中间直线上,当直线相切时距离最小,计算得到答案.【题目详解】如图所示:过点Q作直线平行于y=x+1,则M在两条平行线的中间直线上,y=x2,则y'=2x=1,x=1点M为线段PQ的中点,故M在直线y=x+38时距离最小,故故答案为:32【答案点睛】本题考查了抛物线中距离的最值问题,转化为切线问题是解题的关键.16、8【答案解析】
利用的代换,将写成,然后根据基本不等式求解最小值.【题目详解】因为(即取等号),所以最小值为.【答案点睛】已知,求解()的最小值的处理方法:利用,得到,展开后利用基本不等式求解,注意取等号的条件.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ).(Ⅱ).【答案解析】
详解:(Ⅰ)当时,由,解得;当时,不成立;当时,由,解得.所以不等式的解集为.(Ⅱ)因为,所以.由题意知对,,即,因为,所以,解得.【答案点睛】⑴绝对值不等式解法的基本思路是:去掉绝对值号,把它转化为一般的不等式求解,转化的方法一般有:①绝对值定义法;②平方法;③零点区域法.⑵不等式的恒成立可用分离变量法.若所给的不等式能通过恒等变形使参数与主元分离于不等式两端,从而问题转化为求主元函数的最值,进而求出参数范围.这种方法本质也是求最值.一般有:①为参数)恒成立②为参数)恒成立.18、(1)(2)证明见解析【答案解析】
(1)依题意可得,考虑到,则有再分类讨论可得;(2)要证明,即证,即证.利用基本不等式即可得证;【题目详解】解:(1)由及,得,考虑到,则有,它可化为或即或前者无解,后者的解集为,综上,的取值范围是.(2)要证明,即证,由,得,即证.因为(当且仅当,时取等号).所以成立,故成立.【答案点睛】本题考查分类讨论法解绝对值不等式,基本不等式的应用,属于中档题.19、(1)AB的中点的横坐标为;(2)证明见解析;(3)【答案解析】
设.(1)因为直线的倾斜角为,,所以直线AB的方程为,联立方程组,消去并整理,得,则,故线段AB的中点的横坐标为.(2)根据题意得点,若直线AB的斜率为0,则直线AB的方程为,A、C两点重合,显然M,B,C三点共线;若直线AB的斜率不为0,设直线AB的方程为,联立方程组,消去并整理得,则,设直线BM、CM的斜率分别为、,则,即=,即M,B,C三点共线.(3)根据题意,得直线GH的斜率存在,设该直线的方程为,设,联立方程组,消去并整理,得,由,整理得,又,所以,结合,得,当时,该直线为轴,即,此时椭圆上任意一点P都满足,此时符合题意;当时,由,得,代入椭圆C的方程,得,整理,得,再结合,得到,即,综上,得到实数的取值范围是.20、(1)当时,的单调递增区间是,单调递减区间是;当时,的单调递增区间是,单调递减区间是;(2),证明见解析.【答案解析】
(1)求出,对分类讨论,分别求出的解,即可得出结论;(2)由(1)得出有两解时的范围,以及关系,将,等价转化为证明,不妨设,令,则,即证,构造函数,只要证明对于任意恒成立即可.【题目详解】(1)的定义域为R,且.由,得;由,得.故当时,函数的单调递增区间是,单调递减区间是;当时,函数的单调递增区间是,单调递减区间是.(2)由(1)知当时,,且.当时,;当时,.当时,直线与的图像有两个交点,实数t的取值范围是.方程有两个不等实根,,,,,,即.要证,只需证,即证,不妨设.令,则,则要证,即证.令,则.令,则,在上单调递增,.,在上单调递增,,即成立,即成立..【答案点睛】本题考查函数与导数的综合应用,涉及到函数单调性、极值、零点、不等式证明,构造函数函数是解题的关键,意在考查直观想象、逻辑推理、数学计算能力,属于较难题.21、(1)可以用线性回归模型拟合与的关系;(2),预测2月10日全国累计报告确诊病例数约有4.5万人.【答案解析】
(1)根据已知数据,利用公式求得,再根据的值越大说明它们的线性相关性越高来判断.(2)由(1)的相关数据,求得,,写出回归方程,然后将代入回归方程求解.【题目详解】(1)由已知数据得,,,所以,,所以.因为与的相关近似为0.99,说明它们的线性相关性相当高,从而可以用线性回归模型拟合与的关系.(2)由(1)得,,,所以,关于的回归方程为:,2月10日,即代入回归方程得:.所以预测2月10日全国累计报告确诊病例数约有4.5万人.【答案点睛】本题主要考查线性回归分析和回归方程的求解及应用,还考查了运算求解的能力,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中国高压锅炉管行业现状态势及应用前景预测研究报告(2024-2030版)
- 中国食品安全检测仪器行业市场深度调研及发展前景与投资研究报告(2024-2030版)
- 中国除湿袋行业营销态势及竞争状况分析研究报告(2024-2030版)
- 中国锰铁矿行业需求趋势及发展方向研究研究报告(2024-2030版)
- 中国重烷基苯产业现状动态及投资盈利分析研究报告(2024-2030版)
- 中国花卉艺术行业运营趋势及投资盈利预测研究报告(2024-2030版)
- 中国聚硫橡胶行业需求状况及投资盈利预测研究报告(2024-2030版)
- 中国耐热输送带行业运营动态及需求趋势预测研究报告(2024-2030版)
- 2024年中国拍卖行信息管理系统市场调查研究报告
- 社交公关培训课课程设计
- 2022江苏交通控股有限公司校园招聘试题及答案解析
- 装配式建筑预制构件吊装专项施工方案
- 绘本分享《狐狸打猎人》
- 防诈骗小学生演讲稿
- 小学英语-Unit4 There is an old building in my school教学设计学情分析教材分析课后反思
- 《汽车电气设备检测与维修》 课件 任务14、15 转向灯故障诊断与维修(一、二)
- 离职申请表(完整版)
- 项目5 S7-1200 PLC控制步进电机与伺服电机
- 物业公司章程模板
- 国开2023年秋《分析化学(本)》形考任务1-3参考答案
- 高等电力系统分析-课件
评论
0/150
提交评论