2022-2023学年四川省南充市南部县数学九年级第一学期期末质量检测模拟试题含解析_第1页
2022-2023学年四川省南充市南部县数学九年级第一学期期末质量检测模拟试题含解析_第2页
2022-2023学年四川省南充市南部县数学九年级第一学期期末质量检测模拟试题含解析_第3页
2022-2023学年四川省南充市南部县数学九年级第一学期期末质量检测模拟试题含解析_第4页
2022-2023学年四川省南充市南部县数学九年级第一学期期末质量检测模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.根据阿里巴巴公布的实时数据,截至年月日时,天猫双全球狂欢节总交易额约亿元,用科学记数法表示为()A. B. C. D.2.在△ABC中,∠C90°.若AB3,BC1,则的值为()A. B. C. D.3.一个不透明的盒子有n个除颜色外其它完全相同的小球,其中有12个黄球,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么估计盒子中小球的个数n为()A.20 B.30 C.40 D.504.如图,为测量一棵与地面垂直的树OA的高度,在距离树的底端30米的B处,测得树顶A的仰角∠ABO为α,则树OA的高度为()A.米 B.30sinα米 C.30tanα米 D.30cosα米5.下列选项中,y是x的反比例函数的是()A. B. C. D.6.正比例函数y=2x和反比例函数的一个交点为(1,2),则另一个交点为()A.(﹣1,﹣2) B.(﹣2,﹣1) C.(1,2) D.(2,1)7.下列图形是中心对称图形的是()A. B. C. D.8.坡比常用来反映斜坡的倾斜程度.如图所示,斜坡AB坡比为().A.:4 B.:1 C.1:3 D.3:19.已知反比例函数的图象经过点,则这个函数的图象位于()A.第二、三象限 B.第一、三象限 C.第三、四象限 D.第二、四象限10.下列二次根式中,是最简二次根式的是()A. B. C. D.11.如图,立体图形的俯视图是()A. B. C. D.12.如下是一种电子记分牌呈现的数字图形,其中既是轴对称图形又是中心对称图形的是()A. B. C. D.二、填空题(每题4分,共24分)13.如图,正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为1:,点A的坐标为(1,0),则四边形ODEF的面积为_____.14.用一个圆心角为120°,半径为4的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径为____.15.如图,在Rt△ABC中,∠ACB=90°,D是AB的中点,过D点作AB的垂线交AC于点E,BC=6,sinA=,则DE=_____.16.一个扇形的弧长是,它的面积是,这个扇形的圆心角度数是_____.17.如图,将一个装有水的杯子倾斜放置在水平的桌面上,其截面可看作一个宽BC=6厘米,长CD=16厘米的矩形.当水面触到杯口边缘时,边CD恰有一半露出水面,那么此时水面高度是______厘米.18.如图,△ABC绕点A逆时针旋转得到△AB′C′,点C在AB'上,点C的对应点C′在BC的延长线上,若∠BAC'=80°,则∠B=______度.三、解答题(共78分)19.(8分)如图,已知抛物线的对称轴为直线,且抛物线与轴交于、两点,与轴交于点,其中,.(1)若直线经过、两点,求直线和抛物线的解析式;(2)在抛物线的对称轴上找一点,使点到点的距离与到点的距离之和最小,求出点的坐标;(3)设点为抛物线的对称轴上的一个动点,求使为直角三角形的点的坐标.20.(8分)某超市销售一种书包,平均每天可销售100件,每件盈利30元.试营销阶段发现:该商品每件降价1元,超市平均每天可多售出10件.设每件商品降价元时,日盈利为元.据此规律,解决下列问题:(1)降价后每件商品盈利元,超市日销售量增加件(用含的代数式表示);(2)在上述条件不变的情况下,求每件商品降价多少元时,超市的日盈利最大?最大为多少元?21.(8分)如图,方格纸中的每个小方格都是边长为1个单位的正方形,建立平面直角坐标系后,的顶点均在格点上,点的坐标为.(1)画出关于轴对称的;写出顶点的坐标(,),(,).(2)画出将绕原点按顺时针旋转所得的;写出顶点的坐标(,),(,),(,).(3)与成中心对称图形吗?若成中心对称图形,写出对称中心的坐标.22.(10分)某学校从360名九年级学生中抽取了部分学生进行体育测试,并就他们的成绩(成绩分为A、B、C三个层次)进行分析,绘制了频数分布表与频数分布直方图(如图),请根据图表信息解答下列问题:分组频数频率C100.10B0.50A40合计1.00(1)补全频数分布表与频数分布直方图;(2)如果成绩为A层次的同学属于优秀,请你估计该校九年级约有多少人达到优秀水平?23.(10分)如图,矩形中,,,点是边上一定点,且.(1)当时,上存在点,使与相似,求的长度.(2)对于每一个确定的的值上存在几个点使得与相似?24.(10分)已知二次函数的顶点坐标为,且经过点,设二次函数图象与轴交于点,求点的坐标.25.(12分)如图,在平面直角坐标系中,抛物线y=ax2+bx+c交x轴于A、B两点,OA=1,OB=3,抛物线的顶点坐标为D(1,4).(1)求A、B两点的坐标;(2)求抛物线的表达式;(3)过点D做直线DE//y轴,交x轴于点E,点P是抛物线上A、D两点间的一个动点(点P不于A、D两点重合),PA、PB与直线DE分别交于点G、F,当点P运动时,EF+EG的值是否变化,如不变,试求出该值;若变化,请说明理由。26.如图,在正方形中,为边的中点,点在边上,且,延长交的延长线于点.(1)求证:△∽△.(2)若,求的长.

参考答案一、选择题(每题4分,共48分)1、A【解析】根据科学计数法的表示方法即可得出答案.【详解】根据科学计数法的表示方法可得:2135应该表示为2.135×103,故答案选择A.【点睛】本题考查的是科学计数法的表示方式:(,n为正整数).2、A【解析】∵在△ABC中,∠C=90°,AB=3,BC=1,∴sinA=.故选A.3、C【分析】根据利用频率估计概率得到摸到黄球的概率为30%,然后根据概率公式计算n的值即可.【详解】根据题意得:,解得n=40,所以估计盒子中小球的个数为40个.故选C.【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,概率=所求情况数与总情况数之比.熟练掌握概率公式是解题关键.4、C【解析】试题解析:在Rt△ABO中,∵BO=30米,∠ABO为α,∴AO=BOtanα=30tanα(米).故选C.考点:解直角三角形的应用-仰角俯角问题.5、C【解析】根据反比例函数的定义“一般的,如果两个变量x,y之间的关系可以表示成,其中为常数,,我们就叫y是x的反比例函数”判定即可.【详解】A、x的指数是,不符定义B、x的指数是1,y与x是成正比例的,不符定义C、可改写成,符合定义D、当是,函数为,是常数函数,不符定义故选:C.【点睛】本题考查了反比例函数的定义,熟记定义是解题关键.6、A【详解】∵正比例函数y=2x和反比例函数y=的一个交点为(1,2),∴另一个交点与点(1,2)关于原点对称,∴另一个交点是(-1,-2).故选A.7、B【解析】根据中心对称图形的定义,在平面内,把图形绕着某个点旋转,如果旋转后的图像能与原图形重合,就为中心对称图形.【详解】选项A,不是中心对称图形.选项B,是中心对称图形.选项C,不是中心对称图形.选项D,不是中心对称图形.故选B【点睛】本题考查了中心对称图形的定义.8、A【分析】利用勾股定理可求出AC的长,根据坡比的定义即可得答案.【详解】∵AB=3,BC=1,∠ACB=90°,∴AC==,∴斜坡AB坡比为BC:AC=1:=:4,故选:A.【点睛】本题考查坡比的定义,坡比是坡面的垂直高度与水平宽度的比;熟练掌握坡比的定义是解题关键.9、D【分析】首先将点P的坐标代入确定函数的表达式,再根据k>0时,函数图象位于第一、三象限;k<0时函数图象位于第二、四象限解答即可.【详解】解:∵反比例函数的图象经过点P(-2,1),

∴k=-2<0,

∴函数图象位于第二,四象限.故选:D.【点睛】本题考查了反比例函数图象上的点以及反比例函数图象的性质,掌握基本概念和性质是解题的关键.10、B【分析】根据最简二次根式概念即可解题.【详解】解:A.=,错误,B.是最简二次根式,正确,C.=3错误,D.=,错误,故选B.【点睛】本题考查了最简二次根式的概念,属于简单题,熟悉概念是解题关键.11、C【解析】找到从上面看所得到的图形即可.【详解】A、是该几何体的主视图;B、不是该几何体的三视图;C、是该几何体的俯视图;D、是该几何体的左视图.故选C.【点睛】考查了三视图的知识,掌握所看的位置,注意所有的看到的棱都应表现在视图中.12、C【分析】根据轴对称和中心对称图形的概念可判别.【详解】(A)既不是轴对称也不是中心对称;(B)是轴对称但不是中心对称;(C)是轴对称和中心对称;(D)是中心对称但不是轴对称故选:C二、填空题(每题4分,共24分)13、1【分析】利用位似图形的性质得出D点坐标,进而求出正方形的面积.【详解】∵正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为1:,点A的坐标为(1,0),∴OA:OD=1:,∵OA=1,∴OD=,∴正方形ODEF的面积为:OD1=×=1.故答案为:1.【点睛】此题主要考查了位似变换以及坐标与图形的性质,得出OD的长是解题关键.14、【解析】试题分析:,解得r=.考点:弧长的计算.15、【详解】∵在Rt△ABC中,BC=6,sinA=∴AB=10∴.∵D是AB的中点,∴AD=AB=1.∵∠C=∠EDA=90°,∠A=∠A∴△ADE∽△ACB,∴即解得:DE=.16、120°【分析】设扇形的半径为r,圆心角为n°.利用扇形面积公式求出r,再利用弧长公式求出圆心角即可.【详解】设扇形的半径为r,圆心角为n°.由题意:,∴r=4,∴∴n=120,故答案为120°【点睛】本题考查扇形的面积的计算,弧长公式等知识,解题的关键是掌握基本知识.17、【分析】先由勾股定理求出,再过点作于,由的比例线段求得结果即可.【详解】解:过点作于,如图所示:∵BC=6厘米,CD=16厘米,CD厘米,,由勾股定理得:,,,,,,即,.故答案为:.【点睛】此题主要考查了勾股定理的应用以及相似三角形的判定与性质,正确把握相关性质是解题关键.18、1【分析】根据旋转的性质和等腰三角形的性质即可得到结论.【详解】解:∵△ABC绕点A逆时针旋转得到△AB′C′,∴∠C′AB′=∠CAB,AC′=AC,∵∠BAC'=80°,∴∠C′AB′=∠CAB=C′AB=40°,∴∠ACC′=70°,∴∠B=∠ACC′﹣∠CAB=1°,故答案为:1.【点睛】本题考查了旋转的性质,等腰三角形的性质,三角形的外角的性质,正确的识别图形是解题的关键.三、解答题(共78分)19、(1)抛物线的解析式为,直线的解析式为.(2);(3)的坐标为或或或.【解析】分析:(1)先把点A,C的坐标分别代入抛物线解析式得到a和b,c的关系式,再根据抛物线的对称轴方程可得a和b的关系,再联立得到方程组,解方程组,求出a,b,c的值即可得到抛物线解析式;把B、C两点的坐标代入直线y=mx+n,解方程组求出m和n的值即可得到直线解析式;(2)设直线BC与对称轴x=-1的交点为M,此时MA+MC的值最小.把x=-1代入直线y=x+3得y的值,即可求出点M坐标;(3)设P(-1,t),又因为B(-3,0),C(0,3),所以可得BC2=18,PB2=(-1+3)2+t2=4+t2,PC2=(-1)2+(t-3)2=t2-6t+10,再分三种情况分别讨论求出符合题意t值即可求出点P的坐标.详解:(1)依题意得:,解得:,∴抛物线的解析式为.∵对称轴为,且抛物线经过,∴把、分别代入直线,得,解之得:,∴直线的解析式为.(2)直线与对称轴的交点为,则此时的值最小,把代入直线得,∴.即当点到点的距离与到点的距离之和最小时的坐标为.(注:本题只求坐标没说要求证明为何此时的值最小,所以答案未证明的值最小的原因).(3)设,又,,∴,,,①若点为直角顶点,则,即:解得:,②若点为直角顶点,则,即:解得:,③若点为直角顶点,则,即:解得:,.综上所述的坐标为或或或.点睛:本题综合考查了二次函数的图象与性质、待定系数法求函数(二次函数和一次函数)的解析式、利用轴对称性质确定线段的最小长度、难度不是很大,是一道不错的中考压轴题.20、(1)(30-x);10x;(2)每件商品降价10元时,商场日盈利最大,最大值是4000元.【分析】(1)降价后的盈利等于原来每件的盈利减去降低的钱数;件降价1元,超市平均每天可多售出10件,则降价x元,超市平均每天可多售出10x件;(2)等量关系为:每件商品的盈利×可卖出商品的件数=利润w,化为一般式后,再配方可得出结论.【详解】解:(1)降价后每件商品盈利(30-x)元;,超市日销售量增加10x件;(2)设每件商品降价x元时,利润为w元根据题意得:w=(30x)(100+10x)=10x2+200x+3000=-10(x-10)2+4000∵10<0,∴w有最大值,当x=10时,商场日盈利最大,最大值是4000元;答:每件商品降价10元时,商场日盈利最大,最大值是4000元.【点睛】本题考查的知识点是二次函数的实际应用,根据题意找出等量关系式列出利润w关于x的二次函数解析式是解题的关键.21、(1)作图见解析,;(2)作图见解析,;(3)成中心对称,对称中心坐标是【分析】(1)根据关于轴对称的点的特征找到A,C的对应点,然后顺次连接即可,再根据关于轴对称的点横坐标互为相反数,纵坐标相同即可写出的坐标;(2)将绕原点O顺时针旋转90°得到三点的对应点,然后顺次连接即可,再根据直角坐标系即可得到的坐标;(3)利用成中心对称的概念:如果一个图形绕某一点旋转180°后与另一个图形重合,我们就把这两个图形叫做成中心对称判断即可,然后根据一组对应点相连,其中点就是对称中心即可得出答案.【详解】解:(1)如图,根据关于y轴对称的点的特点可知:;(2)如图,由图可知,;(3)根据中心对称图形的定义可知与成中心对称,对称中心为线段的中点,坐标是.【点睛】本题主要考查作轴对称图形、中心对称和作旋转图形,掌握关于y轴对称的点的特点和对称中心的求法是解题的关键.22、(2)见解析;(2)244人【分析】(2)首先利用C组的数据可以求出抽取了部分学生的总人数,然后利用频率或频数即可补全频数分布表与频数分布直方图;(2)根据(2)的几个可以得到A等级的同学的频率,然后乘以362即可得到该校九年级约有多少人达到优秀水平.【详解】(2)补全频数分布表如下:分组频数频率C222.22B522.52A422.42合计2222.22补全直方图如下:(2)∵A层次的同学人数为42人,频率为2.42,∴估计该校九年级约有2.4×362=244人达到优秀水平.【点睛】本题考查的知识点是频率分布表及用样本估计总体以及频率分布直方图,解题的关键是熟练的掌握频率分布表及用样本估计总体以及频率分布直方图.23、(1)或1;(2)当且时,有1个;当时,有2个;当时,有2个;当时,有1个.【分析】(1)分△AEF∽△BFC和△AEF∽△BCF两种情形,分别构建方程即可解决问题;(2)根据题意画出图形,交点个数分类讨论即可解决问题;【详解】解:(1)当∠AEF=∠BFC时,

要使△AEF∽△BFC,需,即,解得AF=1或1;

当∠AEF=∠BCF时,

要使△AEF∽△BCF,需,即,解得AF=1;

综上所述AF=1或1.(2)如图,延长DA,作点E关于AB的对称点E′,连结CE′,交AB于点F1;

连结CE,以CE为直径作圆交AB于点F2、F1.当m=4时,由已知条件可得DE=1,则CE=5,即图中圆的直径为5,可得此时图中所作圆的圆心到AB的距离为2.5,等于所作圆的半径,F2和F1重合,即当m=4时,符合条件的F有2个,当m>4时,图中所作圆和AB相离,此时F2和F1不存在,即此时符合条件的F只有1个,当1<m<4且m≠1时,由所作图形可知,符合条件的F有1个,综上所述:当1<m<4且m≠1时,有1个;

当m=1时,有2个;

当m=4时,有2个;

当m>4时,有1个.【点睛】本题考查作图-相似变换,矩形的性质,圆的有关知识等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.24、点的坐标为:【分析】以顶点式设函数解析式,将点代入,求出二次函数解析式,再令,求得对应的值,则可得点的坐标.【详解】解:∵二次

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论