




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
ESD静电问题终极解决方案2009-4-310:11:00【文章字体:大中小】推荐收藏打印电磁干扰与兼容网讯静电是人们非常熟悉的一种自然现象。静电的许多功能已经应用到军工或民用产品中,如静电除尘、静电喷涂、静电分离、静电复印等。然而,静电放电ESD(Electro-StaticDischarge)却又成为电子产品和设备的一种危害,造成电子产品和设备的功能紊乱甚至部件损坏。现代半导体器件的规模越来越大,工作电压越来越低,导致了半导体器件对外界电磁骚扰敏感程度也大大提高°ESD对于电路引起的干扰、对元器件、CMOS电路及接口电路造成的破坏等问题越来越引起人们的重视。电子设备的ESD也开始作为电磁兼容性测试的一项重要内容写入国家标准和国际标准。静电成因及其危害静电是两种介电系数不同的物质磨擦时,正负极性的电荷分别积累在两个特体上而形成。当两个物体接触时,其中一个趋从于另一个吸引电子,因而二者会形成不同的充电电位。就人体而言,衣服与皮肤之间的磨擦发生的静电是人体带电的主要因之一。静电源与其它物体接触时,依据电荷中和的机理存在着电荷流动,传送足够的电量以抵消电压。在高速电量的传送过程中,将产生潜在的破坏电压、电流以及电磁场,严重时将其中物体击毁,这就是静电放电。国家标准中定义:静电放电是具有不同静电电位的特体互相靠近或直接接触引起的电荷转移(GB/T4365-1995),一般用ESD表示。ESD会导致电子设备严重损坏或操作失常。静电对器件造成的损坏有显性和隐性两种。隐性损坏在当时看不出来,但器件变得更脆弱,在过压、高温等条件下极易损坏。ESD两种主要的破坏机制是:由ESD电流产生热量导致设备的热失效;由ESD感应出过高电压导致绝缘击穿。两种破坏可能在一个设备中同时发生,例如,绝缘击穿可能激发大的电流,这又进一步导致热失效。除容易造成电路损害外,静电放电也极易对电子电路造成干扰。静电放电对电子电路的干扰有二种方式。一种是传导干扰,另一种是辐射干扰。数码产品的构造及其ESD问题现在各类数码产品的功能越来越强大,而电路板却越来越小,集成度越来越高。并都或多或少的装有部分接口用于人机交互,这样就存在着人体静电放电的ESD问题。一般数码产品中需要进行ESD防护的部位有:USB接口、HDMI接口、IEEE1394接口、天线接口、VGA接口、DVI接口、按键电路、SIM卡、耳机及其他各类数据传输接口。ESD可能会造成产品工作异常、死机,甚至损坏并引发其他的安全问题。所以在产品上市之前,国内或国外检测部门都要求进行ESD和其它浪涌冲击的测试。其中接触放电需要达到土8kV,空气放电需要达到±15kV,这就对ESD的设计提出了较高的要求。数码产品中ESD问题解决与防护3.1产品的结构设计如果将释放的静电看成是洪水的话,那么主要的解决方法与治水类似,就是“堵”和“疏”。如果我们设计的产品有一个理想的壳体是密不透风的,静电也就无从而入,当然不会有静电问题了。但实际的壳体在合盖处常有缝隙,而且许多还有金属的装饰片,所以一定要加以注意。其一,用“堵”的方法。尽量增加壳体的厚离,即增加外壳到电路板之间的距离,或者通过一些等效方法增加壳体气隙的距离,这样可以避免或者大大减少ESD的能量强度。通过结构的改进,可以增大外壳到内部电路之间气隙的距离从而使ESD的能量大大减弱。根据经验,8kV的ESD在经过4mm的距离后能量一般衰减为零。其二,用“疏”的方法,可以用EMI油漆喷涂在壳体的内侧。EMI油漆是导电的,可以看成是一个金属的屏蔽层,这样可以将静电导在壳体上;再将壳体与PCB(PrintedCircuitBoard)的地连接,将静电从地导走。这样处理的方法除了可以防止静电,还能有效抑制EMI的干扰。如果有足够的空间,还可以用一个金属屏蔽罩将其中的电路保护起来,金属屏蔽罩再连接PCB的GND。总之,ESD设计壳体上需要注意很多地方,首先是尽量不让ESD进入壳体内部,最大限度地减弱其进入壳体的能量。对于进入壳体内部的ESD尽量将其从GND导走,不要让其危害电路的其它部分。壳体上的金属装饰物使用时一定要小心,因为很可能带来意想不到的结果,需要特别注意。3.2产品的PCB设计现在产品的PCB(PrintedCircuitBoard)都是高密度板,通常为4层板。随着密度的增加,趋势是使用6层板,其设计一直都需要考虑性能与面积的平衡。一方面,越大的空间可以有更多的空间摆放元器件,同时,走线的线宽和线距越宽,对于EMI、音频、ESD等各方面性能都有好处。另一方面,数码产品设计的小巧又是趋势与需要。所以,设计时需要找到平衡点。就ESD问题而言,设计上需要注意的地方很多,尤其是关于GND布线的设计以及线距,很有讲究。有些产品中ESD存在很大的问题,一直找不到原因,通过反复研究与实验,发现是PCB设计中的出现的问题。为此,这里总结了PCB设计中应该注意的要点:PCB板边(包括通孔Via边界)与其它布线之间的距离应大于0.3mm;PCB的板边最好全部用GND走线包围;GND与其它布线之间的距离保持在0.2mm〜0.3mm;Vbat与其它布线之间的距离保持在0.2mm〜0.3mm;重要的线如Reset、Clock等与其它布线之间的距离应大于0.3mm;大功率的线与其它布线之间的距离保持在0.2mm〜0.3mm;不同层的GND之间应有尽可能多的通孔(VIa)相连;在最后的铺地时应尽量避免尖角,有尖角应尽量使其平滑。3.3产品的电路设计在壳体和PCB的设计中,对ESD问题加以注意之后,ESD还会不可避免地进入到产品的内部电路中,尤其是以下一些端口:USB接口、HDMI接口、IEEE1394接口、天线接口、VGA接口、DVI接口、按键电路、SIM卡、耳机及其他各类数据传输接口,这些端口很可能将人体的静电引入内部电路中。所以,需要在这些端口中使用ESD防护器件。以往主要使用的静电防护器件是压敏电阻和TVS器件,但这些器件普遍的缺点是响应速度太慢,放电电压不够精确,极间电容大,寿命短,电性能会因多次使用而变差。所以目前行业中普遍使用专业的“静电抑制器”来取代以往的静电防护器件。“静电抑制器”是专业解决静电问题的产品,其内部构造和工作原理比其他产品更具科学性和专业性。它由Polymer高分子材料制成,内部菱形分子以规则离散状排列,当静电电压超过该器件的触发电压时,内部分子迅速产生尖端对尖端的放电,将静电在瞬间泄放到地。它最大特点是反应速度快(0.5ns〜1ns)、非常低的极间电容(0.05pf〜3pf),很小的漏电流(1〃A),非常适合各种接口的防护。因为静电抑制器具有体积小(0603、0402)、无极性、反应速度快等诸多优点,现在的设计中使用静电抑制器作为防护器件的比例越来越多,在使用时应注意以下几点:1、将该器件尽量放置在需要保护的端口附近;2、到GND的连线尽可能短;3、所接GND的面积尽可能大。ESD的问题是众多重要问题之一。在不同的电子设备中有不同的方式来避免对电路的危害。由于现在的数码产品体积小、密度大,在ESD的防护上有独到的特点。通过大量的静电测试实验证明,采用本文的设计方法处理,将一个原本土2kV放电就会死机的产品加以保护和改进,在±8kV的静电放电情况下依然可以稳定工作,起到了很好的静电防护效果。随着电子设备使用的日益广泛,ESD设计是每一个结构设计工程师和电子设计工程师需要重点关心的问题,通过不断总结与学习,ESD问题将不再是一个难题!地线干扰与地线设计发布时间:2006-11-20点击次数:2562智能交通网地线设计是电磁兼容设计中大家都很注意,却又不知道应该怎样去做的一个问题。了解了地线造成干扰问题的机理之后,在设计和实施地线时就有了一个明确的思路。本期从介绍地线造成干扰的原理入手,使读者了解设计地线的关键和原则。1什么是地线?地线有安全地和信号地两种。前者是为了保证人身安全、设备安全而设置的地线,后者是为了保证电路正确工作所设置的地线。造成电路干扰现象的主要是信号地,因此这里仅讨论信号地的问题。信号地的一般定义是:电路的电位参考点。更恰当地说,这个定义是我们设计电路时的一个假设。从这个定义是无法分析和理解一些地线干扰问题的。从现在开始,我们在分析电磁兼容问题时,使用下面的定义。地线是信号电流流回信号源的地阻抗路径。既然地线是电流的一个路径,那么根据欧姆定律,地线上是有电压的;既然地线上有电压,说明地线不是一个等电位体。这样,我们在设计电路时,关于地线电位一定的假设就不再成立,因此电路会出现各种错误。这就是地线十扰的实质。2地线的阻抗有多大?一个难以理解的问题是,我们在设计地线时,都使地线的电阻很小,那么地线上的电位差怎么会大到导致电路出错的程度。理解这个问题,要理解地线阻抗的组成。地线的阻抗Z由电阻部分和感抗部分两部分组成,即:Z=RAC+j④L。电阻成分:导体的电阻分为直流电阻RDC和交流电阻RAC。对于交流电流,由于趋肤效应,电流集中在导体的表面,导致实际电流截面减小,电阻增加,直流电阻和交流电阻的关系如下:RAC=0.076rf1/2RDC式中:r二导线的半径,单位cm,f=流过导线的电流频率,单位Hz,RDC=导线的直流电阻,单位。。电感成分:任何导体都有内电感(这区别于通常讲的外电感,外电感是导体所包围的面积的函数),内电感与导体所包围的面积无关。对于圆截面导体如下:L=0.2S[ln(4.5/d)-1](pH)式中S二导体长度(m),d二导体直径(m)表1说明了直流电阻与交流阻抗的巨大差异。频率很低时的阻抗可以认为是导体的电阻,从表中可以看出,随着频率升高,阻抗增加很快,当频率达到100MHz以上时,直径6.5mm长度仅为10cm的导线也有数十欧姆的阻抗。烦零d=0„65cmd-0.06cm<3=0.10cmImlOcmIm10皿Im:〔15Im10Hz51T原茹T的3i5.52.13.婉133输LhHr技引口7.泌心S.5.34nti5S.mL4aiQ14蝴100kHz715心物板LOQSO.3n幻1,07Q1MHz加M。也:g两膈1岑•.!:土:2.L3Q35.5Q3.57Q500186Q53QlOKHz1源71.2Q牝蜘T.14Q卬g1顼:只50bHz21.3Q356^27Q目1也35.7Q500QS8.5ft53ftQ[lOOflFJz技.曲71.4Q150MHz63.^081Q1g■15Q表1不同直径、长度的导线的阻抗3地环路干扰及对策地环路干扰是一种较常见的干扰现象,常常发生在通过较长电缆连接的相距较远的设备之间。其产生的内在原因是设备之间的地线电位差。地线电压导致了地环路电流,由于电路的非平衡性,地环路电流导致对电路造成影响的差模干扰电压(图1)。由于地环路干扰是由地环路电流导致的,因此在实践中,有时会发现,当将一个设备的地线断开时,干扰现象消失,这是因为地线断开时,切断了地环路。这种现象往往发生在干扰频率较低的场合,当干扰频率高时,短开地线与否关系不大。地环路干扰形成的原因1:两个设备的地电位不同,形成地电压,在这个电压的驱动下,“设备1-互联电缆-设备2-地”形成的环路之间有电流流动。由于电路的不平衡性,每根导线上的电流不同,因此会产生差模电压,对电路造成干扰。地线上的电压是由于其他功率较大的设备也用这段地线,在地线中引起较强电流,而地线又有较大阻抗产生的。地环路干扰形成的原因2:由于互联设备处在较强的电磁场中,电磁场在“设备1-互联电缆-设备2-地”形成的环路中感应出环路电流,与原因1的过程一样导致干扰。解决地环路干扰的方法:解决地环路干扰的基本思路有三个:一个是减小地线的阻抗,从而减小干扰电压,但是这对第二种原因导致的地环路没有效果。另一个是增加地环路的阻抗,从而减小地环路电流。当阻抗无限大时,实际是将地环路切断,即消除了地环路。例如将一端的设备浮地、或将线路板与机箱断开等是直接的方法。但出于静电防护或安全的考虑,这种直接的方法在实践中往往是不允许的。更实用的方法是使用隔离变压器、光耦合器件、共模扼流圈、平衡电路等方法。第三个方法是改变接地结构,将一个机箱的地线连接到另一个机箱上,通过另一个机箱接地,这就是单点接地的概念。4公共阻抗耦合及对策当两个电路的地电流流过一个公共阻抗时,就发生了公共阻抗耦合,如图2(a)所示。图2一个电路的地电位会受到另一个电路工作状态的影响,即一个电路的地电位受另一个电路的地电流的调制,另一个电路的信号就耦合进了前一个电路。放大器级间公共地线耦合问题:图2(a)中的放大器,由于前置放大电路与功率放大电路共用一段地线,功率放大电路的地线电流很大,因此在地线上产生了较大的地线电压V。这个电压正好在前置放大电路的输入回路中,如果满足一定的相位关系,就形成了正反馈,造成放大器自激。解决办法:可以有两个解决办法,一个是将电源的位置改变一下,使它靠近功率放大电路,这样,就不会有较大的地线电压落在前置放大电路的输入回路中了,如图2(b)所示。另一个办法是功率放大电路单独通过一根地线连接到电源,这实际是改成了并联单点接地结构,如图2(d)所示。5接地策略图3信号地有图3所示的几种方式。单点接地:所有电路的地线接到公共地线的同一点,进一步可分为串联单点接地和并联单点接地。最大好处是没有地环路,相对简单。但地线往往过长,导致地线阻抗过大。多点接地:所有电路的地线就近接地,地线很短,适合高频接地。问题是存在地环路。混合接地:在地线系统内使用电感、电容连接,利用电感、电容器件在不同频率下有不同阻抗的特性,使地线系统在不同的频率具有不同的接地结构。串联单点接地容易产生公共阻抗耦合的问题,解决的方法是采用并联单点接地。但是并联单点接地往往由于地线过多,而没有可实现性。因此,灵活的方案是,将电路按照信号特性分组,相互不会产生干扰的电路放在一组,一组内的电路采用串联单点接地,不同组的电路采用并联单点接地。如图4所示。这样,既解决了公共阻抗耦合的问题,又避免了地线过多的问题。监控系统中监视器常见问题九例一、监视器与电视又什么区别?为什么电视机不能作为监视器使用?监视器在功能上要比电视机简单但在性能上,却要求比电视机要求高,其主要区别反映在三个'、度”。一是图像清晰度:由于传统的电视机接收的是电视台发射出来的射频信号,这一信号对应的视频图像带宽通常小于6M,因而电视机的清晰度通常大于400线,要求监视器具有较高的图像清晰度,故专业监视器在通道电路上比起传统电视机而言应具备带宽补偿和提升电路,使之通频带更宽,图像清晰度更高。二是色彩还原度,如果说清晰度主要是由视频通道的幅频特性决定的话,还原度则主要由监视器中有红(R)、绿(G)、蓝(B)三基色的色度信号和亮度信号的相位所决定。由于监视器所观察的通常为静态图像,因而对监视器色彩还原度的要求比电视机更高,故专业监视器的视放通道在亮度、色度处理和R、G、B处理上应具备精确的补偿电路和延迟电路,以确保亮/色信号和R、G、B信号的相位同步。三是整机稳定度:监视器在构成闭路监控系统时,通常需要每天24小时,每年365天连续无间断的通电使用(而电视机通常每天仅工作几小时),并且某些监视器的应用环境可能较为恶劣,这就要求监视器的可靠性和稳定性更高。与电视机相比而言,在设计上,监视器的电流、功耗、温度及抗电干扰、电冲击的能力和裕度以及平均无故障使用时间均要远大于电视机,同时监视器还必须使用全屏蔽金属外壳确保电磁兼容和干扰性能;在元器件的选型上,监视器使用的元器件的耐压、电流、温度、湿度等各方面特性都要高于电视机使用的元器件;而在安装、调试尤其是元器件和整机老化的工艺要求上,监视器的要求也更高,电视机制造时整机老化通常是在流水线上常温通电8小时左右,而监视器的整机老化则需要在高温、高湿密闭环境的老化流水线上通电老化24小时以上,以确保整机的稳定性。由上面的分析可见,如果使用电视机作为监控系统的终端监视器,除了可能感觉到图像较为模糊(清晰度较低、色彩还原度较差)之外,电视机使用的元器件也不适合无间断连续使用的要求。如果强行使用电视机作为监视器。轻则易于产生故障,严重时可能会由于电视机的工作温度过高而引起意外事故。二、 隔行监视器和逐行监视器有什么区别?隔行和逐行主要是指监视器显像管的扫描方式。监视器的图像是二维图像,而其重现过程是将二维输入图像变成一位的像素串,在通过水平扫描过程实现画面从左侧向右侧的匀速移动;垂直扫描则将水平扫描线匀速地由垂直方向移动。隔行扫描是指将一幅图像分成两场进行扫描,第一场(奇数场)扫描1、3、5等奇数行,第二场(偶数场)扫描2、4、6等偶数行,两场合起来构成一幅完整的图像(即一帧)。因此对于PAL制而言,每秒扫描50场,场频为50HZ,而帧频为25HZ;对NTSC而言,场频为60HZ,而帧频为30HZ,虽然在人的视觉上屏幕重现的是连续的图像,但由于奇数场合偶数场切换都会造成屏幕闪烁和明显的行间隔线的效果。而逐行扫描则指其扫描行按次序一行接一行扫描的方式。隔行扫描监视器有图像质量差,清晰度低,噪波大和图像闪烁严重等缺点。逐行扫描监视器则是为了消除隔行扫描的缺陷,将模拟视频信号转换为数字信号,通过数字彩色解码,借助数字信号存储和控制技术实现一行或一场信号的重复使用(即低速读入、高速读出)的50HZ逐行扫描方式,或者再提高帧频,实现60HZ、75HZ以致85HZ的逐行扫描方式。逐行扫描技术由于将输入信号通过A/D转换变成数字视频信号再由数字解码和数字图像处理电路进行行、场扫描处理,通道带宽大大提升(可达到10MHZ-20MHZ)、清晰度大大提高、噪声大大降低,同时逐行显示消除了行间隔线和行间闪烁,而帧频的提高(如60HZ-85HZ)则减轻或消除了大面积的图像闪烁。因此逐行监视器一经问世,便深受用户的欢迎。当然,由于逐行监视器采用一行或一场的重复使用,行频比隔行提高了一倍,由15625HZ变成31250HZ,75Hz逐行的行频为46875Hz。行频提高之后,行输出级的稳定性和可靠性将受到严重的考验,整机的设计和制造成本大大提高,因此整机的价格也较高。三、 目前市场上标称100Hz监视器是隔行还是逐行的?如问题2所述,由于50HZ隔行监视器存在明显缺陷,我们可通过倍行的方式实现50Hz逐行扫描,或通过倍场的方式实现100Hz隔行扫描,另外还可通过倍行+变频(50Hz场频*1.2或*1.5)形成60Hz逐行或75Hz逐行扫描,但截至目前为止,我们尚未发现国内外研发机构及芯片制造商推出倍行+倍场即100Hz逐行的技术和芯片,此外,要实现100Hz逐行显示时,显像管偏转线圈所承受的行频将达到62500Hz的驱动频率,这一高行频的显像管目前的技术也难于制造出来(显示器使用的显示管除外),因此可以断定的是目前市场上标称100Hz的监视器只能是100Hz隔行扫描监视器。100Hz隔行扫描技术在前几年的电视机市场曾经风靡一时,其代表性芯片方案如飞利浦的MK-9倍频处理模块、东芝公司的数码100模块等。但是随着美国像素科技和泰鼎公司的等倍(变)频60Hz(75Hz)逐行处理模块的出现。100Hz隔行扫描技术已逐步被淘汰。100Hz隔行扫描技与50Hz隔行扫描技术同样存在行间闪烁、视在爬行、行蠕动、图像粗糙和边缘锯齿等现象。而60Hz及75Hz逐行扫描监视器则由于采用了高帧和逐行技术而较为理想的消除了上述100Hz扫描存在的缺陷,因而100Hz隔行技术已基本上被60Hz或75Hz逐行技术所取代。四、 监视器为什么较易受磁化?如果监视器被磁化应如何处理?地磁场和监视器显像管周边的带磁物质,如金属机柜的漏磁等均会使电子枪电子束产生附加偏转,影响色纯度和电子枪R、G、B三叔电子束的运动轨迹精度。另外,彩色显像管内部金属阴罩板及其支架以外部的防爆环等金属部件,在彩色监视器移动时将改变与地磁场的取向,地磁场间磁化这些部件,直接或间接地影响显像管的色纯度和会聚,在屏幕上将会造成某一局部的偏色。故此建议监视器摆放是尽可能南北摆放(屏幕垂直南北向)且远离磁性物体,尽可能减弱地磁场的影响。监视器中设有自动消磁电路,监视器在每次开机使用时可以消除通常情况下CRT内部金属部件被外来磁场磁化的影响。如果监视器被磁化(表现为色纯不良)现象较轻微的,多次开关机即可使被磁化的金属部件消磁;如果磁化严重即使多次开关机仍色纯不良的,则只好使用外部消磁的方法了。五、 CRT监视器与LED监视器在性能上有什么区别?CRT监视器会否被LCD监视器所取代?使用阴极射线显像管(CRT)的彩色监视器和使用液晶显示屏(LCD)的彩色监视器在图像重现原理上是由区别的,前者采用磁偏转驱动实现行场扫描的方式(也称模拟驱动方式),而后者采用点阵驱动的方式(也称数字驱动方式)。因而前者往往使用电视线来定义其清晰度,而后者则通过像素数来定义其分辨率。CRT监视器的清晰度主要有监视器的通道带宽和显像管的点距和会聚误差决定,而后者则由所使用LCD屏的像素数决定。CRT监视器具有价格低廉、亮度高、视角宽、使用寿命较高的优点,而LCD监视器则有体积小(平板形)、重量轻、图像无闪动无辐射的优点,但是LCD监视器的主要缺点是造价高、视角窄(侧面观看时图像变暗、彩色飘移甚者出现反色)、使用寿命短(通常LCD屏幕在烧机5000小时之后其亮度下降为正常亮度的60%以下,但CRT的平均寿命可达3万小时以上)等缺点。应该肯定的是:价格、视角和使用寿命是影响LCD监视器普及的三大瓶颈。当然,LCD作为平板显示器件的一项最为成熟的前沿产品,已越来越受到国内外有关厂家的重视,其技术正在不断地进步。目前新型采用面内切换技术的薄膜品体(TFT)工艺的LCD屏的水平视角已可达到160°、垂直视角已可达到140°;与此同时,LCD屏的价格将随着产品的逐步普及和产量的逐步上升而逐渐下降;LCD的使用寿命也将随着LCD背光源及液晶材料技术的不断进步而提高。因此无可置疑的是若干年后(可能是5年或10年之后)LCD监视器完全有可能取代CRT监视器成为监视器市场的主流产品。六、 监视器作为矩阵控制系统的监视器终端时,为什么在矩阵控制器切换图像是会出现一段时间的不同步现象?在监控系统中,每路前端设备(如摄像机)等输出的图像信号中的场同步信号如果存在相位差,则矩阵控制器切换各路图像信号时,监视器便会出现一段时间的不同步现象,相位差越大,不同步的时间就越长。因此建议在构建监控系统时,应尽量选用带有外同步(GEN-LOOK)输入的前端设备,并且所有的前端设备均使用外同步方式,即各路图像信号的同步都受同一同步信号控制,促使监视器屏幕显示同步。七、 在使用监视器观察图像时,为什么有时会出现图像扭曲、变形失真、行场不同步甚至无输入信号的故障、现象?1、 监视器的行业标准规定,专业监视器的输入信号幅度为1Vp-P±3dB(约0.7Vp-PT.4Vp-p),输入阻抗为75欧姆。因此,如果输入信号由于线缆衰减、阻抗不匹配或传输电缆的BNC头制作不规范等原因,造成输入信号幅度远低于0.7p-p;或者由于摄像机的输出不规范或接入了某些不规范的接入设备(如分配器、放大器等)导致输入信号幅度远大于1.4Vp-p时,均有可能造成图像失真、行场不同步等现象。2、 由于视频频率范围较宽,视频信号在传输过程中较易受到干扰(包括50Hz电源干扰,电磁波干扰等),从而影响图像质量。干扰严重的可能造成图像扭曲、变形、滚道、行场不同步。因此监控系统安装过程中,视频线必须远离电磁波干扰源。3、 前端设备、控制主机设备及终端设备之间的电位有电位差也会干扰视频信号,造成图像信号的畸变或图像出现滚道,如果在整个系统带电接入时(即前端设备、主控设备及终端设备均处于通电状态下接入BNC头连接前后端设备时),可能由于前后端设备的地线(实际上是便是传输电缆的屏蔽层)之间的电位差造成地对地跳火,这一跳火严重时会击毁输入端的元件或PCB板砂锅内的地级敷线。造成输入端开路,输入无图像故障。因此监控系统工程的建设应严格按规范设计、施工。接地母线应采用足够截面积的铜制导线,确保前后端的地对地电阻<1Q接地线不得形成封闭回路,不得与强电网零线短接或混接。八、 监视器的清晰度是如何定义的?有什么仪器可以检测出监视器的清晰度?监视器的清晰度是由监视器视频通道的带宽和显像管的点距和会聚误差决定的,对于PAL信号而言,其通道带宽与清晰度这件的折算关系为1M78线,对NTSC制式而言,为1M56线;此外,要确保监视器相应的清晰度,监视器使用的显像管的点距和会聚误差也必须达到相应的要求,例如对会聚误差而言:监视器水平清晰度0K平宽度(mm)/中心会聚误差(mm)必须指出的是,某些厂家在监视器出场时对监视器的清晰度的标称有夸大行为。实际上对于监视器清晰度的评判一方面可以通过图像主观评价判别出来,另一方面也可以通过专用仪器——带多波群图像的图像信号发生器的显示结果判别出来。九、同一支彩色摄像机在不同的彩色监视器上为什么有的能显示出彩色,有的只能显示黑白图像?摄像机和监视器作为监视系统的前、后端设备,其原理刚好相反,前者是通过CCD(或其他传感器件)将被摄对象的成像转变成为电信号,并经视频处理电路处理成为视频信号;而监视器则用于将视频信号通过视频通道的解码电路分解出红(R)、绿(G)、蓝(B)和亮度(Y)信号,并通过释放电路驱动显像管的电子枪形成R、G、B三束电子束摄向屏幕。输入视频信号还同时通过同步分离电路分离出行、场同步信号,并通过行、场偏转线圈产生行、场扫描信号,促使摄向屏幕的电子束一一落在相应位置,最终重现一幅幅稳定的图像。对于PAL彩色视频信号而言,其色度信号通常被调制在中心频率为4.43MHz的彩色副载波上,如果摄像机产生的彩色副载波频率产生偏移,或者监视器解码电路的4.43MHz负载波振荡器的中心频率产生偏移,则有可能使重现的图像不能显示出彩色,而变成寄生有网纹信号的黑白图像。彩色监视器行业标准所规定的彩色副载波同步范围为4.43MHz±300Hz,因此如果摄像机输出的复合视频信号的彩色副载波频率偏移量超过±300Hz时,则在监视器上将有可能不能重现彩色图像。当然,监视器的彩色同步范围也可以调得宽些(如t500Hz),但彩色副载波信号的宽度和品质因数是相克的,同步范围如果故意扩大,则彩色噪波则会相应增大,即彩色信号的品质也相应会下降。另一方面:如果监视器输入的复合视频信号幅度严重下降或严重畸变,也可能造成重现图像无彩色的现象,这是因为彩色监视器的行业标准规定专业级监视器输入信号幅度低于0.7Vpp,或由于使用了非75Q标准的同轴电缆而造成高频衰减,致使彩色副载波的信号幅度低于0.21Vpp的话,也可能导致重现图像无彩色,此时便必须在敷线时增设视频放大器或选用75Q标准的同轴电缆了。控电视的防雷、接地的常见问题防雷雷电总是出其不意地袭击,给没有防雷设施或防雷措施不当的运动场馆的图像信息系统带来麻烦。通常表现为:1、天线设施击毁;2、传输线路和设施损坏;3、接地和终端设施被毁等。MTVT—91型微波开路电视传输系统,新型的全向圆极化缝隙天线、螺旋天线等设备通常安装在室外。微波传输系统的发射机和天线如果不采用防雷设施,雷击的可能性很大。光缆中的纤芯是非金属材料,不受雷击的影响。但是同轴电缆、控制电缆和光纤中金属护套等,极易受到雷击的危害。所以在运动场馆中的监控电视系统中,加强防雷措施,这是至关重要的。进入监控中心的架空电缆和杆顶,或是高于附近其他建筑物处装设的摄像机和各种缆线应有避雷保护。架空光缆一般不设专门的防雷设施,但为了减少雷电对架空光缆的影响,光缆吊线一般每隔1公里必须接地。埋式光缆的线路防雷材料最好选用有色金属线,有色金属线的阻抗非常小,防雷效果好。CCITT《防雷手册》指出:雷电流峰值的平均值约20kA,大于100kA的记录为罕见。光纤塑料外护套的厚度多为2mm,冲击击穿电流设为100kA;当雷电流为20kA,土壤电阻率为100、500、1,000。?m时,导致光缆塑料外护套击穿的距离分别是3、16、32m。当年平均雷暴日(D)为20,土壤电阻率(P)为100。?m的光缆通信线路上,雷击可期次数约为0.5次,随着?值的增大,雷击的可期次数也增大。因此,根据国内外的理论计算和应用经验,应加强以下防雷措施:1、 电(光)缆的金属护套和铠装不作接地,使之处于浮动地;2、 电(光)缆的金属护套(或铠装)、金属加强构件,或接头处相邻电(光)缆间不作电气连通;电(光)缆各金属构件也不做电气连通。3、 对无铜线电(光)缆铺设一根防雷线;对于有铜线电(光)缆铺设两根防雷线;;4、 用于发射和接收无线电信号的天线及其杆塔必须有防雷措施,天线的杆顶应安装接闪器。5、 天线的馈线应穿金属管道或紧贴防雷下引线。6、 户外设备,应具有防雾、雨、雪、冰凌、大风、温湿的性能等。接地图像信息系统的接地问题与一般供电和防雷接地有所不同。电视的视频信号通常用1Vp-p值的电平传输,其阻抗为75。,视频电缆的屏蔽网层与系统地相接。系统地主要是用来防止电气干扰和提供一个稳定的基准电位。接地,通常指电气设备和地之间组成的电气连接,并使电荷通过地的部分称作接地。接地常用的参数指标有:接地电阻指的是接地体本身的电阻、接地体与土壤间的接触电阻、接地体附近的土壤电阻、接地体至电气设备间连接导体的电阻等。在中等土壤电阻率的土壤情况下,一般是离接地体20m,如图可以看出,在20m处的电位只有所加电压最大值的2%,一般可以认为是零电位点。土壤电阻率一一土壤电阻率常常也叫做电阻系数。其用符号p表示,单位是欧?米,实用单位是欧?厘米。土壤电阻率数值受多种因素的影响,各种土壤在不同条件下的电阻率都是不同的。如表所示。接地作用和各种接地电阻的要求,一般分为四种情况:附表:常见的土壤电阻率土壤类别粘土一般土壤黄土砂质土壤砂石层十性混凝土p(。/m)20602003010001100工作接地电路利用大地作回路,起着工作回路的作用。工作接地一般不利用其他自然接地体,例如金属上下水管、暖气管、煤气管、建筑物构架等。工作接地电阻值应小于等于4。。保护接地为了人生和设备的安全,利用大地建立统一的参考电位。保护接地引线必须是专用的,而且都是单独地从保护接地母线直接引出。保护接地电阻值要求小于等于10。。防雷接地为了人和物的安全,防止雷电流的危害。各类防雷接地装置的接地电阻,一般应根据落雷时的反击条件来决定。防雷接地电阻值应小于等于10。。静电接地为了防止静电引起的灾害,把管道或设备进行接地。防静电接地要求在洁净干燥的环境中,所有设备外壳及室内设施必须均与PE线多点可靠连接。防静电接地电阻要求应小于等于100。。还有独立的交流工作接地电阻值应小于等于4。;独立的直流工作接地电阻值应小于等于4。;建筑物防雷装置散流电阻、供配电系统强弱电接地共用时,其接地电阻值应小于等于1。;系统工艺地电阻值应小于等于0.4。。运动场馆中的图像信息接地系统应为一独立系统,不能与电力系统的地网、防雷地网、建筑物基础,以及发射和接收天线的接地网等相连。因此,系统在选择埋设接地体的场地、开挖地沟、以及在铺设接地体时就要特别注意,防止与这些地网的的金属导体碰触,以免影响使用效果。所以,在视频信号传输时,无论是利用电缆还是光缆,无论是采用有线还是微波传输信号,无论是传输模拟信号还是数字信号,系统的接地都是非常重要的常见视频传输方式及施工技巧1、同轴电缆传输在闭路监控系统中,同轴电缆是传输视频图像最常用的媒介。同轴电缆截面的圆心为导体,外用聚乙烯同心圆状绝缘体覆盖,再外面是金属编织物的屏蔽层,最外层为聚乙烯封皮。同轴电缆对外界电磁波和静电场具有屏蔽作用,导体截面积越大,传输损耗越小,可以将视频信号传送更长的距离。摄像机输出通过同轴电缆直接传输全监视器,若要保证能够清晰地加以显示,则同轴电缆的长度有限制。如果要传得更远,一种方法是改用截面积更大的同轴电缆类型,另一种方法是在靠近监视器处安装一台后均衡视频放大器(postequalizingvideomplifier),通过补偿视频信号中容易衰减的高频部分使经过长距离传输的视频信号仍能保持一定的强度,以此来增长传输距离。需要指出的是,后均衡视频放大器只能安装在靠近监视器之处,如果安装在摄像机附近则失效。此外,所有电缆均应是阻抗为75欧姆的纯铜芯电缆,绝对不可用镀铜或铝芯电缆。采用同轴电缆传送视频信号时,由于存在不平衡电源线负载等因素会导致各点之间存在地电位差,其电压峰-峰幅值在0〜10V。为此应采用被动式接地隔离变压器(GROUNDISOLATIONTRANSFORMER),它可放置在同轴电缆中存在地电位差的任何一处,并可放置多个,用它可以消除存在地电位差带来的问题,并有效地降低50Hz频率共模电压。电缆的选择认真选择合适的电缆对于设备是否能达到最佳性能至关重要,同轴电缆的阻抗都为75欧姆。材质只能使用纯铜芯导线的电缆。不要采用镀铜的铜芯电缆或铝芯电缆,因为它们不能在CATV网所用的整个频段上有效地传输信号。CATV信号传输要求电缆芯线具有底的直流阻抗。在不发生弯折的情况下,实心裸铜导线最适于视频应用。如果在正常使用中,弯则无法避免,则应选用绞芯线。绝缘材料最好是多孔(泡沫)聚乙烯。它比实心的聚乙烯有更好的电气特性,但容易受潮湿影响。因此在潮湿环境的应用中应采用实心聚乙烯绝缘的外部有厚绝缘层的电缆。屏蔽层必须是覆盖95%以上铜丝编辑层。安装技巧:不要拉伸电缆或使之过度弯曲。避免电缆同供热管道和其他热源的接触。即使热量不足以造成对电缆的明显损害,也会使传输特性受到影响。在电缆必须连续弯曲的场合(如有扫描仪或水平俯仰云台),应使用专门的电缆。这种电缆的芯导线应是多股胶合线。只使用压接型的BNC连接器。电缆类型和操作距离:最常用的电缆有RG-59/U和RG-11/U两类。每种都包括一系列具有不同电气特性的电缆产品,其中一些是不适于CATV应用的。当采用Belden之外的电缆时,应以表A中电缆的特性作为准则。材质和结构必须遵循上述原则。表B列出了最大电缆长度同图像质量之间的关系。除非特别说明,建议使用下列的同轴电缆。2、光纤视频传输光纤是能使光以最小的衰减从一端传到另一端的透明玻璃或塑料纤维,光纤的最大特性是抗电子噪声干扰,通讯距离远。光纤有多模光纤和单模光纤之分。单模光纤只有单一的传播路径,一般用于长距离传输,多模光纤有多种传播路径,多模光纤的带宽为50MHz〜500MHz/Km,单模光纤的带宽为2000MHz/Km,光纤波长有850nm,1310nm和1550nm等°850nm波长区为多模光纤通信方式;1550nm波长区为单模光纤通信方式;1310nm波长区有多模和单模两种;850nm的衰减较大,但对于2~3MILE(1MILE=1604m)的通信较经济。光纤尺寸按纤维直径划分有50pm缓变型多模光纤、62.5pm缓变增强型多模光纤和8.3pm突变型单模光纤,光纤的包层直径均为125.m,故有62.5/125pm、50/125pm、9/125pm等不同种类。由光纤集合而成的光缆,室外松管型为多芯光缆,室内紧包缓冲型有单缆和双缆之分。闭路电视监控系统中的视频图像、音频、控制信号都可以通过光纤进行传输,传输系统也是由一个发射机和一个接收机组成,主要有下列传送形式:现在单模光纤在波长1.31.m或1.55.m时光速的低损耗窗口,每公里衰减可作到0.2〜0.4分贝以下,是同轴电缆每公里损耗的1%,因此模拟光纤多路电视传输系统可实现20公里无中断传输,这个基本上能满足超远距离的电视监控系统。同轴电缆由于衰减大,用它组成的传输网,干线放大器之间的距离一般为427~610米,即每公里需要增加1至2个十线放大器。这无疑增加了系统的复杂性和降低了系统的可靠性。而且在十线传输中最多可串接20多个放大器,因而最长只能传输10公里左右,再长会由于中继放大器的噪声和失真的累加,使信号达不到规定的标准。用光缆作干线传输系统容量大、能双向传输、系统指标好、安全可靠性高。主要缺点是建网造价高,施工技术难度大,但它能适应长距离的大系统干线使用。3、 射频传输在布线有限制的情况下,近距离的无线传输是最方便的。无线视频传输由发射机和接收机组成,每对发射机和接收机有相同的频率,可以传输彩色和黑白视频信号,并可以有声音通道。无线传输的设备体积小巧,重量轻,一般采用直流供电。另外由于无线传输具有一定的穿透性,不需要布视频电缆等特点,也常用于电视监控系统(一般常用于公安、铁路、医院等场所)。值得注意的是,现在常用的无线传输设备采用2400兆赫兹频率,传输范围有限,一般只能传输200~300米。而大功率设备又有可能干扰正常的无线电通讯,受到限制,在这里就不再赘述了。4、 电话线传输另一种长距离传输视频的方法是利用现有的电话线路。由于近几年电话的安装和普及,电话线路分布到各个地区,构成了现成的传输网络。电话线传输系统就是利用现有的网络,在发送端加一个发射机,在监控端加一个接收机,不需要电脑,通过调制解调器与电话线相连,这样就构成了一个传输系统。由于电话线路带宽限制和视频图像数据量大的矛盾,传输到终端的图像都不连续,而且分辨率越高,帧与帧之间的间隔就越长;反之,如果想取得相对连续的图像,就必然以牺牲清晰度为代价。打个比方来说,我们日常所走的道路相当于传输线路,来来往往的行人车辆相当于视频信息。如果道路宽阔,行人车辆稀少,交通必然顺畅;如果道路狭窄,行人车辆却很多,必然产生交通堵塞。信息的传输也是如此,线路频带宽(道路宽阔),接头和联接设备少(路口和红绿灯少),信息量固定(车流量一定),那么图像的连续性和清晰度也是保持一定;如果线路频带窄,信息量大,那么只能象我们平日上班经常遇到的一样,大家排在停车线后,依次通过。如果强行通过,对人来说,可能发生交通事故;对设备来说,就会发生数据混乱,也可能导致更严重的后果。在选择传输方式时,根据自己的情况和要求,考虑传输距离,对图像的连续性、图像的清晰度要求,系统造价,地理条件限制等因素,合理的选择适合自己要求的方式,这样才会有好的效果。一、地的分类工程师在设计电路时,为防止各种电路在电路正常工作中产生互相干扰,使之能相互兼容地有效工作。根据电路的性质,将电路中“零电位” “地”分为不同的种类,比如按交直流分为直流地、交流地,按参考信号分为数字地(逻辑地)、模拟地,按功率分为信号地、功率地、电源地等,按与大地的连接方式分为系统地、机壳地(屏蔽地)、浮地。不同的接地方式在电路中应用、设计和考虑也不相同,应根据具体电路分别进行设置。1信号地信号地(SG)是各种物理量的传感器和信号源零电位以及电路中信号的公共基准地线(相对零电位)。此处信号一般指模拟信号或者能量较弱的数字信号,易受电源波动或者外界因素的干扰,导致信号的信噪比(SNR)下降。特别是模拟信号,信号地的漂移,会导致信噪比下降;信号的测量值产生误差或者错误,可能导致系统设计的失败。因此对信号地的要求较高,也需要在系统中特殊处理,避免和大功率的电源地、数字地以及易产生干扰地线直接连接。尤其是微小信号的测量,信号地通常需要采取隔离技术。2模拟地模拟地(AG)是系统中模拟电路零电位的公共基准地线。由于模拟电路既承担小信号的处理,又承担大信号的功率处理;既有低频的处理,又有高频处理;模拟量从能量、频率、时间等都很大的差别,因此模拟电路既易接受干扰,又可能产生干扰。所以对模拟地的接地点选择和接地线的敷设更要充分考虑。减小地线的导线电阻,将电路中的模拟和数字部分开,在PCB布线的时候,模拟地和数字地应尽量分开,最后通过电感滤波和隔离,汇接到一起。如图4-1所示。模掀部分电路 数字部分电路3数字地数字地(DG)是系统中数字电路零电位的公共基准地线。由于数字电路工作在脉冲状态,特别是脉冲的前后沿较陡或频率较高时,会在电源系统中产生比较大的毛刺,易对模拟电路产生干扰。所以对数字地的接地点选择和接地线的敷设也要充分考虑。尽量将电路中的模拟和数字部分分开,在PCB布线的时候,模拟地和数字地应尽量分开,最后通过电感,汇接到一起.4悬浮地悬浮地(FG)是系统中部分电路的地与整个系统的地不直接连接,而是通过变压器耦合或者直接不连接,处于悬浮状态。该部分电路的电平是相对于自己地”的电位。常用在小信号的提取系统或者强电和弱点混合系统中。其优点是该电路不受系统中电气和干扰的影响;缺点是该电路易受寄生电容的影响,而使该电路的地电位变动和增加对模拟电路的感应干扰。由于该电路的地与系统地没有连接,易产生静电积累而导致静电放电,可能造成静电击穿或强烈的干扰c因此,悬浮地的效果不仅取决于悬浮地绝缘电阻的大小,而且取决于悬浮地寄生电容的大小和信号的频率。在图4-2所示的VDD-SGND的电源供电系统中,所有工作点相对的地都是SGND,但是SGND和DGND之间是电平处于悬浮状态,VDD-SGND的电源供电的系统与整个系统的连接完全通过变压器耦合,在这里设计的时候需要注意信号的连接方式。
VDD VCCSCND ,悬浮地变压网5电源地电源地是系统电源零电位的公共基准地线。由于电源往往同时供电给系统中的各个单元,而各个单元要求的供电性质和参数可能有很大差别,因此既要保证电源稳定可靠的工作,又要保证其他单元稳定可靠地工作。同时,电源系统功耗比大,在单层板或者双层板中地线的线宽必须加粗(参考计算公式见式(4-1)。若在多层板中,则应以一层或者多层作为系统的地平面。6功率地功率地是负载电路或功率驱动电路的零电位的公共基准地线。由于负载电路或功率驱动电路的电流较强、电压较高,所以功率地线上的干扰较大,因此功率地必须与其他弱电地分别设置、分别布线,以保证整个系统稳定可靠地工作。二、接地方式在低频电路中,信号的工作频率小于1MHz,它的布线和器件间的电感影响较小,而接地电路形成的环流对干扰影响较大,因而应采用一点接地。当信号工作频率大于10MHz时,地线阻抗变得很大,此时应尽量降低地线阻抗,应采用就近多点接地。当工作频率在1MHz~10MHz时,如果采用一点接地,其地线长度不应超过波长的1-20,否则应采用多点接地法。工作接地按工作频率而采用如图4-3所示几种接地方式。
(一)单点接地工作频率低(<1MHz)的采用单点接地式(即把整个电路系统中的一个结构点看作接地参考点,所有对地连接都接到这一点上,并设置一个安全接地螺栓),以防两点接地产生共地阻抗的电路性耦合。多个电路的单点接地方式又分为串联和并联两种(如图4-4所示)。由于串联接地产生共地阻抗的电路性耦合,所以低频电路最好采用并联的单点接地式。井联单点接地就点:无公共阻抗祸合戢点;接地取拓井联单点接地就点:无公共阻抗祸合戢点;接地取拓串联型痘接地推点,祷单缺点:公共阻抗耦合图4-4串联接地和并联接地S>83L (4-9式中L——地线的长度,m;、•——地线的截面5卜 PCB资源网*7 11EI1.1为防止工频和其他杂散电流在信号地线上产生干扰,信号地线应与功率地线和机壳地线相绝缘,且只在功率地、机壳地和接往大地的接地线的安全接地螺栓上相连(浮地式除外)。地线的长度与截面的关系为:(二)多点接地工作频率高(>10MHz)的采用多点接地式(如图4-5所示)。在该电路系统中,用一块接地平板代替电路中每部分各自的地回路。因为接地引线的感抗与频率和长度成正比,工作频率高时将增加共地阻抗,从而将增大共地阻抗产生的电磁干扰,所以要求地线的长度尽量短。采用多点接地时,尽量找最接近的低阻值接地面接地。此处电路板最好设计为多层电路(4层以上),提供一层作为地平面。(三)混合接地工作频率介于1MHz~10MHz,的电路采用混合接地式。当接地线的长度小于工作信号波长的1/20时,采用单点接地式,否则采用多点接地式。根据系统的需求和电路的需要进行合理的安排。电路开发PCB设计单片机嵌入式系统L■谓将要求安判PC日骐YAHOO-CN我们第一时问为鲤报折电话四)悬浮接地悬浮接地是系统的地与大地不直接连接,而是通过变压器耦合或者直接不连接,处于悬浮状态。悬浮接地应注意以下几点:(1) 尽量提高浮地系统的对地绝缘电阻,从而有利于降低进入浮地系统中的共模干扰电流,保证系统的可靠性。(2) 注意浮地系统对地存在的较大寄生电容,高频干扰信号通过寄生电容仍然可能耦合到浮地系统
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 河北资源环境职业技术学院《中医饮食保健学》2023-2024学年第一学期期末试卷
- 陕西省宝鸡一中学2025年初三第三次模拟练习英语试题含答案
- 南京工业大学《护理研究》2023-2024学年第二学期期末试卷
- 北京朝阳人大附朝阳分校2025年初三下期末联考(英语试题理)试题含答案
- 无锡商业职业技术学院《国际贸易结算》2023-2024学年第二学期期末试卷
- 川南幼儿师范高等专科学校《工程测试技术》2023-2024学年第二学期期末试卷
- 新疆天山职业技术大学《研学旅行培训》2023-2024学年第二学期期末试卷
- 游戏产业与电子书出版互动考核试卷
- 2025年度租赁合同模板(标准版)
- 2025年上海市劳动合同范本(官方版)
- 2025念珠菌病诊断和管理全球指南解读课件
- 碘对比剂应用护理安全性
- 水电站安全生产培训
- 《矿井提升设备》课件2
- 被迫解除劳动合同通知书电子邮件
- 工具表单-岗位价值评估表(海氏)
- DB33T 2515-2022 公共机构“零碳”管理与评价规范
- 2025年-安徽省安全员知识题库及答案
- 2024年中国酸奶乳品市场调查研究报告
- 外研版(2025新版)七年级下册英语Unit 3 学情调研测试卷(含答案)
- 2024重庆市中考语文A卷真题写作话题解读与参考范文-漫画“各有千秋”、“给校长的一封信”
评论
0/150
提交评论