高级微观经济学最优化_第1页
高级微观经济学最优化_第2页
高级微观经济学最优化_第3页
高级微观经济学最优化_第4页
高级微观经济学最优化_第5页
已阅读5页,还剩48页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

高级微观经济学课件最优化第1页,共53页,2022年,5月20日,21点48分,星期四A2.1微积分第2页,共53页,2022年,5月20日,21点48分,星期四设D是一个非退化的实值区间—在此区间上,f是二次可微的.如下的1至3阐述是等价的:1.f是凹的.2.f(x)≤0,xD.3.对于一切x0D,f(x)≤f(x0)+f(x0)(x-x0)4.如果f(x)<0,xD,那么,f是严格凹的.0yx0xxl0l1图A2.3曲率与二阶导数定理A2.1凹性与一阶和二阶导数第3页,共53页,2022年,5月20日,21点48分,星期四2022/9/83A2.1.2多变量函数的偏导数可以定义为:nnniiinxftgtRttzxftgxffxzzzzhxxfxhxxfxxfxfxxfy1111)()(0.)()()(),...(),...(),..,...,(lim)(),,...(iniizxfg1)()0(=å=¢==Î+==-+=¶¶=右边项便是f在x点处沿z方向上的方向导数。g´(0)=f(x)z时,,这里定义设函数为:开始发生怎样的变化。由的值将会,的方向偏离点设关于令偏导数反映的是函数沿坐标轴方向的变化率我们还必须要研究沿某一方向的导数,这就是方向导数第4页,共53页,2022年,5月20日,21点48分,星期四2022/9/84证明由于函数可微,则增量可表示为两边同除以得到第5页,共53页,2022年,5月20日,21点48分,星期四2022/9/85故有方向导数第6页,共53页,2022年,5月20日,21点48分,星期四2022/9/86梯度的概念第7页,共53页,2022年,5月20日,21点48分,星期四2022/9/87zf¶¶有最大值.

第8页,共53页,2022年,5月20日,21点48分,星期四2022/9/88结论第9页,共53页,2022年,5月20日,21点48分,星期四2022/9/89梯度与等高线的关系:第10页,共53页,2022年,5月20日,21点48分,星期四2022/9/810定理A2.2杨格定理梯度取梯度=海赛矩阵例题A2.2考虑函数f(x1,x2)=x1x22+x1x2,验证杨格定理对于二次连续可微函数f(x)第11页,共53页,2022年,5月20日,21点48分,星期四2022/9/811定理A2.3单变量与多变量的凹性设f是一个定义在Rn的凸子集上的实值函数,那么,当且仅当对于每个xD与每个非零的zRn,函数g(t)=f(x+tz)在tRx+tzD上是(严格)凹的.那么,f是(严格)凹的.证明1:设f是一个凹函数.令xD且zRn,我们要证明g(t)=f(x+tz)在C=tRx+tzD上是凹的.即要证明:g(αt0+(1-α)t1)≥αg(t0)+(1-α)g(t1)(P.1)第12页,共53页,2022年,5月20日,21点48分,星期四2022/9/812C是一个凸集,使得g(αt0+(1-α)t1)Cg(αt0+(1-α)t1)=f(x+(αt0+(1-α)t1)z)=f(α(x+t0z)+(1-α)(x+t1z))≥αf(x+t0z)+(1-α)f(x+t1z)(f是凹的)=αg(t0)+(1-α)g(t1)=f(α(x+t0z)+(1-α)(x+t1z))第13页,共53页,2022年,5月20日,21点48分,星期四2022/9/813证明2:g是凹的,证明f是凹的y0

=x+t0zy1

=x+t1zf(αy0+(1-α)y1)=f(α(x+t0z)+(1-α)(x+t1z))=f(x+(αt0+(1-α)t1)z)=g(αt0+(1-α)t1)≥αg(t0)+(1-α)g(t1)(g是凹的)=αf(x+t0z)+(1-α)f(x+t1z)=αf(y0)+(1-α)f(y1)(f是凹的)第14页,共53页,2022年,5月20日,21点48分,星期四2022/9/814定理A2.4关于多变量函数的斜率,曲率与凹性设D是Rn一个凸子集,在此集的一个非空的内部,f是二次连续可微的.如下三个命题是等价的:1.f是凹的.2.对于D中的所有x,H(X)是负正定的.3.对于一切x0D,f(x)≤f(x0)+f(x0)(x-x0),xD.此外,4.如果对于D中所有x,H(x)是负定的,那么,f是严格凹的.第15页,共53页,2022年,5月20日,21点48分,星期四2022/9/815由于f是二次连续可微的,它足以在D内建立定理.连续性将关注边界点.因此,xintD与zRn.设C={tRx+tzR},并设对于所有tC,g(t)=f(x+tz).注意g承袭f的二次连续可微性.定理A2.4证明现在,设1成立,f是凹的.g在C是也是凹的g(t)≤0,tC(P.1)根据A2.1根据A2.3g(t)≤g(t0)+g(t0)(t-t0)t0,tC(P.2)根据P.1g(t)=f(x+tz)z(P.3)为充分利用这些结论,我们计算g和f的一阶和二阶导数根据P.1为充分利用这些结论,我们计算g和f的一阶和二阶导数第16页,共53页,2022年,5月20日,21点48分,星期四2022/9/816iniiztzxftzxfgå=+=+Ñ=¢1)()(为计算g(t),最简单的方法是将g(t)写成对右边的式子微分,fi(x+tz)关于t的导数正好是fi在x+tz点沿z方向导数—它可以写成此式可以改写为注意0C,依据(P.1)g(0)≤0。由于(P.4),这意味着这意味着H(x)是负半定的,12第17页,共53页,2022年,5月20日,21点48分,星期四2022/9/817定理A2.5凹性,凸性与关于变量本身的二阶便偏导数设f:DR是一个二次可微函数.1.如果f是凹的,那么,x,fii(x)≤0,i=1,…,n.2.如果f是凸的,那么,x,fii(x)≥0,i=1,…,n.第18页,共53页,2022年,5月20日,21点48分,星期四2022/9/818、齐次函数例子A.2.3:柯布—道格拉斯生产函数(C-D),表示劳动和资本在产出中的贡献额度第19页,共53页,2022年,5月20日,21点48分,星期四2022/9/819,表示劳动和资本在产出中的贡献额度第20页,共53页,2022年,5月20日,21点48分,星期四2022/9/820因此把柯布-道格拉斯函数为:这说明,生产要素投入量增加的倍数与产量增加的倍数是相同的。大致为1,因此把柯布-道格拉斯函数看成为线性齐次生产函数第21页,共53页,2022年,5月20日,21点48分,星期四2022/9/821定理A2.6齐次函数的偏导数如果f(x)是k次齐次函数,那么它的偏导数将是k-1次齐次函数.证明:设f(x)是k次齐次函数,f(tx)=tkf(x),t>0(P.1)xixftkxtkfxtxitxfxixitxtxftxfxiii¶¶=¶¶¶¶=¶¶¶¶=¶¶)())(()()())(((P.3)第22页,共53页,2022年,5月20日,21点48分,星期四2022/9/822由于(P.1)是恒等式,(P.2)必定会等于(P.3),因此有:用t除两边得到:对于i=1,…,n,并且t>0,证明完毕.第23页,共53页,2022年,5月20日,21点48分,星期四2022/9/823定理A2.7欧拉定理欧拉定理证明:定义t的函数是十分有用的,g(t)f(tx),固定x,对t微分,有xxxixfxkfkxfnii对所有次齐次性的:是,当且仅当如下式子成立,)()()(1å=¶¶=(p.2)在t=1时:(p.3)第24页,共53页,2022年,5月20日,21点48分,星期四2022/9/824证明必要性设f(x)是k次齐次,使得对一切t>0与任何x,f(tx)=tkf(x),由于(P.1),我们有g(t)=tkf(x),求微分,g(t)=ktk-1f(x),并且在t=1处取值.我们得到g(1)=kf(x).利用(P.3),得到(P.4)证明充分性为证明充分性,设(P.4)成立,在tx处取值得到:(P.5)给(P.2)式两边同乘t,同(P.5)相比较,发现tg(t)=kg(t)(P.6)第25页,共53页,2022年,5月20日,21点48分,星期四2022/9/825考虑函数t-kg(t).如果对此求关于t的微分,得到:从(p.6)来看,它的导数必为零,因此,我们可以得出这样结论,即对于一些常数c,t-kg(t)=c.为找到c,在t=1处求值并注意到g(1)=c.利用定义(P.1),得到c=f(x).我们知道,g(t)=tkf(x).再次把(P.1)代入,我们得到,对于所有x,则有f(tx)=tkf(x).第26页,共53页,2022年,5月20日,21点48分,星期四2022/9/826A2.2最优化第27页,共53页,2022年,5月20日,21点48分,星期四

设f(x)是一个二次可微的单变量函数,那么f(x)将会获得一个局部内点最优值.1.在x*处有最大值f´(x)=0(FONC)

f(x)≤0(SONC)2.在x*处有最小值f´(x̃)=0(FONC)

f(x̃)≥0(SONC)定理A2.8单变量情形中局部内点最优化的必要条件第28页,共53页,2022年,5月20日,21点48分,星期四2022/9/828定理2.9实值函数局部内点最优化的一阶必要条件如果可微函数f(x)在点x*处达到了一个局部内点极大值或极小值,那么,x*为如下联立方程组的解:第29页,共53页,2022年,5月20日,21点48分,星期四2022/9/829证明:证明思路:我们设f(x)在x*处获得了一个局部内部极值,并设法证明f(x*)=0.证明:选择任意向量zRn,那么,对于任意标量t,我们有:g(t)=f(x*+tz)(P.1)从(P.1)我们知道,g(t)不过是f(x)的另一种表现形式.t≠0时,x*+tz正好是不同于x*的向量,故g(t)正好同f的一些值相同.t=0,x*+tz等于x*,因此,g(0)正好是f在x*处的值.已经假设f在x*处取得极值,那么g(t)必定在t=0处获得一个局部极值.那么,g(0)=0第30页,共53页,2022年,5月20日,21点48分,星期四2022/9/830第31页,共53页,2022年,5月20日,21点48分,星期四2022/9/831A2.2.2二阶条件实值函数局部内点最优化的二阶必要条件设f(x)是二次连续可微的.1.如果在点x*处f(x)达到了一个局部内点极大值,那么,H(X*)是负半定的.2.如果f(x)在点x̃处达到了一个局部内点极小值,那么,H(X̃)是负正定的.定理A2.10第32页,共53页,2022年,5月20日,21点48分,星期四2022/9/832或者H(X*)≤0,由于z是任意取的,这以为着H(X*)是负半定的.同理,如果在点x=x̃处f被最小化,那么,g(0)≥0,使得,H(X̃)是半正定的.定理A2.10证明设有(p.1)设f(x)在x=x*处取得最大值,根据定理A2.8必定有g(0)≤0.在点x*处或者在t=0处给(p.1)取值,第33页,共53页,2022年,5月20日,21点48分,星期四2022/9/833定理A2.11海赛矩阵负定与正定的充分条件设f(x)是二次连续可微的,并设Di(x)是海赛矩阵H(x)的第i阶的主子式.1.如果(-1)iDi(x)>0,i=1,…n,那么,H(x)是负定的.2.如果Di(x)>0,i=1,…n,那么,H(x)是正定的.如果在定义域内,对所有x,条件1成立,那么f是严格凹的.如果在定义域内,对所有x,条件2成立,那么f是严格凸的.第34页,共53页,2022年,5月20日,21点48分,星期四2022/9/834定理A2.11海赛矩阵负定与正定的充分条件证明证明思路:借助定理A2.4的第四条(如果对于D中所有x,H(x)是负定的,那么,f是严格凹的.)将定理A2.12转化为矩阵的主子式改变符号是负定的,全为正为正定的.(P.2)第35页,共53页,2022年,5月20日,21点48分,星期四2022/9/835第36页,共53页,2022年,5月20日,21点48分,星期四2022/9/836定理A2.12实值函数局部内点最优化的充分条件设f(x)是二次连续可微的,则:1.如果fi(x*)=0,(-1)iDi(x)>0,i=1,…n,那么,f(x)在x*处将会获得一个局部极大值2.如果fi(x̃)=0并且Di(x̃)>0,i=1,…n,那么,f(x)在x̃处将会获得一个局部极小值第37页,共53页,2022年,5月20日,21点48分,星期四2022/9/837第38页,共53页,2022年,5月20日,21点48分,星期四2022/9/838定理A2.13(无约束的)局部与全局最优化设f(x)是D上一个二次连续可微的实值凹函数.这里,点x*是D的一个内部点,那么如下三个命题等价:1.f(x*)=02.在x*处f获得一个局部极大值.3.在x*处f获得一个全局极大值.证明:显然,32,并依A2.9,21,因此,只需证明13由1.假设,f(x*)=0,由于f是凹的,定理A2.4蕴涵对于定义域的所有x,f(x)≤f(x*)+f(x*)(x-x*)结合假设:f(x)≤f(x*)所以,f在x*处达到全局最大值.第39页,共53页,2022年,5月20日,21点48分,星期四2022/9/839定理A2.14严格凹性/凸性与全局最优化的唯一性1.如果x*最大化了严格凹函数f,那么,x*是唯一全局最大化值点.例如,设f(x*)>f(x),xD,xx*.2.如果x̃最小化了严格凹函数f,那么,x̃是唯一全局最小化值点.例如,设f(x̃)<f(x),xD,xx*.证明:用反证法.如果x*是函数f的全局最大值点,但x*不唯一,存在x≠x*使得f(x)=f(x*).如果,设xt=tx+(1-t)x*,那么,根据严格凹性,f(xt)>tf(x)+(1-t)f(x*),t(0,1)

由于,f(x)=f(x*),f(xt)>tf(x)+(1-t)f(x),即f(xt)>f(x),这与假设x是f的一个全局最大值的假设矛盾,因此,严格凹函数的任何全局最大值必是唯一的.第40页,共53页,2022年,5月20日,21点48分,星期四2022/9/840定理A2.15唯一全局最优化的充分条件设f(x)是D上一个二次连续可微的.1.如果f(x)是严格凹的,并且fi(x*)=0,i=1,…,n;那么,x*是f(x)的唯一全局最大化值点.2.如果f(x)是严格凸的,并且fi(x̃)=0,i=1,…,n;那么,x̃是f(x)的唯一全局最小化值点.第41页,共53页,2022年,5月20日,21点48分,星期四2022/9/841A2.3约束最优化Maxf(x1,x2),受约束于g(x1,x2)=0x1,x2目标函数选择变量约束集或者可行集求解方法:代入法1.x2=g̃(x1)2.Maxf(x1,g̃(x1))第42页,共53页,2022年,5月20日,21点48分,星期四2022/9/842A2.4拉格朗日方法x1,x2Maxf(x1,x2),受约束于g(x1,x2)=0L(x1,x2,)f(x1,x2)+

g(x1,x2)定理A2.16拉格朗日定理第43页,共53页,2022年,5月20日,21点48分,星期四2022/9/843A2.3.6库恩—塔克条件x1,x2Maxf(x1,x2),受约束于g(x1,x2)≥0L(x1,x2,)f(x1,x2)+

g(x1,x2)非线性规划问题库恩—塔克条件:f1+g1=0f2+g2=0g(x1,x2)=0g≥0,g(x1,x2)≥0第44页,共53页,2022年,5月20日,21点48分,星期四2022/9/844A2.20受不等式条件约束的实值函数最优化的(库恩—塔克)必要条件第45页,共53页,2022年,5月20日,21点48分,星期四2022/9/845A2.4值函数xMaxf(x1,x2),受约束于g(x,a)=0,且x≥0M(a)=maxf(x,a),受约束于g(x,a)=0,x≥0x2(a)x1(a)x2x1L(y*):y*=f(x(a)a)图A2.10:在约束条件g(x,a)=0限定下的f(x,a)的最大值第46页,共53页,2022年,5月20日,21点48分,星期四2022/9/846A2.21包络定理第47页,共53页,2022年,5月20日,21点48分,星期四2022/9/847集合论的基本概念和基本结论定义域:凸集连续函数f关系二元关系完备性传递性D是开集,f-1(B)是开集偏好关系拓扑空间度量空间欧氏空间值域:逆象f-1(S)开集闭集紧集紧集的象是紧集BrouwerfixedpointTheoremsS是紧切且凸,f连续,则f(x*)=x*A是一个凸集拟凹函数

f是凹函数第48页,共53页,2022年,5月20日,21点48分,星期四2022/9/848微积分与最优化单变量函数凹性与一、二阶导数等价命题:f是凹的f´(x)0f(x)f(x0)+f(x0)(x-x0)若f是严格凹的严格不等式成立多变量函数偏导数函数梯度f(x)=(f1(x),…,fn(x))

f11(x),…,f1n(x)f21(x),…,f2n(x)

…………….fn1(x),…,fnn(x)H(x)=海赛矩阵对称性Young´Theorem2f(x)/[xixj]=

2f(x)/[xj

xi]海赛矩阵齐次函数凸集、斜率与凹性的等价命题D是凸的H(x)是半负定的f(x)f(x0)+f(x0)(x-x0)欧拉定理Kf(x)=f(x)*xi/xi第49页,共53页,2022年,5月20日,21点48分,星期四2022/9/849X*=f(x*1,x

*2,…x

*n)是一个稳定点[一阶条件]X*是一个相对极大值X*是一个绝对极大值d2x在x*为负定[二阶充分条件]d2x在x*为负定[二阶必要条件]X*是唯一的绝对极大值f是凹的f是严格凹的d2x在x*为半负定d2x处处为负定第50页,共53页,2022年,5月20日,21点48分,星期四2022/9/850最优化无约束最优化有约束最优化单变量X*处最大值f´(x)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论