


版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.已知等腰三角形的两边长分别为2cm和4cm,则它的周长为()A.8B.10C.8或10D.62.如图,在△ABC中,点D,E,F分别在三边上,点E是AC的中点,AD,BE,CF交于一点G,BD=2DC,S△BGD=8,S△AGE=3,则△ABC的面积是()A.25 B.30 C.35 D.403.2的平方根是()A.2 B.-2 C. D.4.下列分解因式正确的是A. B.C. D.5.如图,四边形中,点、分别在、上,将沿翻折,得,若,,则()A.90° B.80° C.70° D.60°6.下列计算正确的是()A. B. C. D.7.在显微镜下测得“新冠”病毒的直径为0.00000000205米,用科学记数法表示为()A.0.205×10﹣8米 B.2.05×109米C.20.5×10﹣10米 D.2.05×10﹣9米8.若≌,则根据图中提供的信息,可得出的值为()A.30 B.27 C.35 D.409.某文化用品商店分两批购进同一种学生用品,已知第二批购进的数量是第一批购进数量的3倍,两批购进的单价和所用的资金如下表:单价(元)所用资金(元)第一批2000第二批6300则求第一批购进的单价可列方程为()A. B.C. D.10.已知多项式,则b、c的值为()A., B., C., D.,二、填空题(每小题3分,共24分)11.小明体重约为62.36千克,如果精确到0.1千克,其结果为____千克.12.如图,将三角形纸板ABC沿直线AB平移,使点A移到点B,若∠CAB=60°,∠ABC=80°,则∠CBE的度数为_____.13.的算术平方根是_____.14.我们规定:等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k,若k=2,则该等腰三角形的底角为________.15.等腰三角形一腰上的高线与另一腰夹角为50°,则该三角形的顶角为_____.16.如图,∠ACD是△ABC的外角.若∠ACD=125°,∠A=75°,则∠B=__________°.17.化简的结果为__.18.若分式的值为0,则x的值是_________.三、解答题(共66分)19.(10分)如图,△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,AB=DC(1)求证:△ABE≌DCE;(2)当∠AEB=50°,求∠EBC的度数.20.(6分)已知:点O到△ABC的两边AB,AC所在直线的距离相等,且OB=OC.(1)如图1,若点O在边BC上,OE⊥AB,OF⊥AC,垂足分别为E,F.求证:AB=AC;(2)如图,若点O在△ABC的内部,求证:AB=AC;(3)若点O在△ABC的外部,AB=AC成立吗?请画出图表示.21.(6分)如图,在平面直角坐标系中,直线分别交轴、轴于点点,,且满足,点在直线的左侧,且.(1)求的值;(2)若点在轴上,求点的坐标;(3)若为直角三角形,求点的坐标.22.(8分)列分式方程解应用题:北京第一条地铁线路于1971年1月15日正式开通运营.截至2017年1月,北京地铁共有19条运营线路,覆盖北京市11个辖区.据统计,2017年地铁每小时客运量是2002年地铁每小时客运量的4倍,2017年客运240万人所用的时间比2002年客运240万人所用的时间少30小时,求2017年地铁每小时的客运量.23.(8分)如图,ABC中,AB=AC,AD⊥BC于点D,延长AB至点E,使∠AEC=∠DAB.判断CE与AD的数量关系,并证明你的结论.24.(8分)在如图所示的平面直角坐标系中:(1)画出关于轴成轴对称图形的三角形;(2)分别写出(1)中的点,,的坐标;(3)求的面积.25.(10分)已知:如图,在△ABC中,∠B=∠C,AD平分外角∠EAC.求证:AD∥BC.26.(10分)在购买某场足球赛门票时,设购买门票数为x(张),总费用为y(元).现有两种购买方案:方案一:若单位赞助广告费10000元,则该单位所购门票的价格为每张60元;(总费用=广告赞助费+门票费)方案二:购买门票方式如图所示.解答下列问题:(1)方案一中,y与x的函数关系式为;方案二中,当0≤x≤100时,y与x的函数关系式为,当x>100时,y与x的函数关系式为;(2)如果购买本场足球赛门票超过100张,你将选择哪一种方案,使总费用最省?请说明理由;(3)甲、乙两单位分别采用方案一、方案二购买本场足球赛门票共700张,花去总费用计58000元,求甲、乙两单位各购买门票多少张.
参考答案一、选择题(每小题3分,共30分)1、B【解析】题目给出等腰三角形有两条边长为2和4,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】当2是腰时,2,2,4不能组成三角形,应舍去;当4是腰时,4,4,2能够组成三角形.∴周长为10cm,故选B.【点睛】本题考查等腰三角形的性质及三角形三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.2、B【解析】在△BDG和△GDC中∵BD=2DC,这两个三角形在BC边上的高线相等∴S△BDG=2S△GDC∴S△GDC=4.同理S△GEC=S△AGE=3.∴S△BEC=S△BDG+S△GDC+S△GEC=8+4+3=15∴S△ABC=2S△BEC=30.故选B.3、D【分析】根据平方根的定义:如果一个数的平方等于,这个数就叫做的平方根,即可得解.【详解】由题意,得故选:D.【点睛】此题主要考查对平方根的理解,熟练掌握,即可解题.4、C【解析】根据因式分解的方法(提公因式法,运用公式法),逐个进行分析即可.【详解】A.,分解因式不正确;B.,分解因式不正确;C.,分解因式正确;D.2,分解因式不正确.故选:C【点睛】本题考核知识点:因式分解.解题关键点:掌握因式分解的方法.5、B【分析】先根据平行线的性质得到∠BMF、∠BNF的度数,再由翻折性质得∠BMN、∠BNM的度数,然后利用三角形内角和定理求解即可.【详解】∵,,∴∠BMF=∠A=110°,∠BNF=∠C=90°,由翻折性质得:∠BMN=∠FMN=∠BMF=55°,∠BNM=∠FNM=∠BNF=45°,∴∠B=180°-∠BMN-∠BNM=180°-55°-45°=80°,故选:B.【点睛】本题考查平行线的性质、翻折的性质、三角形的内角和定理,熟练掌握平行线的性质和翻折性质是解答的关键.6、D【分析】分别利用二次根式加减乘除运算法则化简求出答案即可【详解】解:A、不是同类项,不能合并,故本选项错误;B、不是同类项,不能合并,故本选项错误;C、,故本选项错误;D、;故本选项正确;故选:D【点睛】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,在进行二次根式的乘除运算,然后合并同类二次根式.7、D【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.00000000205米,该数据用科学记数法表示为2.05×10-9米.
故选:D.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.8、A【分析】在△ABC中利用三角形内角和可求得∠A=70°,则可得∠A和∠D对应,则EF=BC,可得到答案.【详解】∵∠B=50°,∠C=60°,∴∠A=70°,∵△ABC≌△DEF,∴∠A和∠D对应,∴EF=BC=30,∴x=30,故选:A.【点睛】本题主要考查全等三角形的性质,掌握全等三角形的对应边、对应角相等是解题的关键.9、B【分析】先根据“购进的数量=所用资金÷单价”得到第一批和第二批购进学生用品的数量,再根据“第二批购进的数量是第一批购进数量的3倍”即得答案.【详解】解:第一批购进的学生用品数量为,第二批购进的学生用品数量为,根据题意列方程得:.故选:B.【点睛】本题考查了分式方程的应用,属于常考题型,正确理解题意、找准相等关系是解题的关键.10、C【分析】根据多项式乘多项式法则将等式左侧展开,然后对应系数即可求出结论.【详解】解:∵∴∴,故选C.【点睛】此题考查的是整式的乘法,掌握多项式乘多项式法则是解决此题的关键.二、填空题(每小题3分,共24分)11、62.1.【分析】把百分位上的数字6进行四舍五入即可.【详解】62.36千克精确到0.1千克为62.1千克.故答案为:62.1.【点睛】本题考查了近似数和有效数字:近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.12、40°【分析】根据平移的性质得出△ACB≌△BED,进而得出∠EBD=60°,∠BDE=80°,进而得出∠CBE的度数.【详解】∵将△ABC沿直线AB向右平移到达△BDE的位置,∴△ACB≌△BED,∵∠CAB=60°,∠ABC=80°,∴∠EBD=60°,∠BDE=80°,则∠CBE的度数为:180°﹣80°﹣60°=40°.故答案为:40°.【点睛】此题主要考查了平移的性质,根据平移的性质得出∠EBD,∠BDE的度数是解题关键.13、2【详解】∵,的算术平方根是2,∴的算术平方根是2.【点睛】这里需注意:的算术平方根和的算术平方根是完全不一样的;因此求一个式子的平方根、立方根和算术平方根时,通常需先将式子化简,然后再去求,避免出错.14、º【分析】根据特征值为2设设底角为,则顶角为2,再根据三角形内角和定理列方程求解即可.【详解】解:∵等腰三角形的顶角与一个底角度数的比值=2,∴设底角为,则顶角为2,∴++2=,∴=,∴底角为,故答案为:.【点睛】本题考查了三角形内角和定理和等腰三角形的性质,设未知数并根据三角形内角和定理列方程是解此题的关键.15、40°或140°【分析】分两种情况讨论:锐角三角形与钝角三角形,作出图形,互余和三角形的外角性质即可求解.【详解】解:如图1,三角形是锐角三角形时,∵∠ACD=50°,∴顶角∠A=90°﹣50°=40°;如图2,三角形是钝角形时,∵∠ACD=50°,∴顶角∠BAC=50°+90°=140°,综上所述,顶角等于40°或140°.故答案为:40°或140°.【点睛】本题考查根据等腰三角形的性质求角度,作出图形,分类讨论是解题的关键.16、50【解析】分析:根据三角形外角的性质进行计算即可.详解:∠ACD是△ABC的外角.若∠ACD=125°,∠A=75°,故答案为50.点睛:考查三角形外角的性质,三角形的一个外角等于与它不相邻的两个内角的和.17、x-1【分析】根据分式的混合运算,可先算括号里面的,再把除化为乘法,约分即可.【详解】解:===故答案为:x-1.【点睛】本题考查分式的混合运算,掌握运算法则正确计算是解题关键.18、1.【分析】直接利用分式为零的条件分析得出答案.【详解】∵分式的值为0,∴x1﹣1x=0,且x≠0,解得:x=1.故答案为1.【点睛】此题主要考查了分式的值为零的条件,正确把握定义是解题关键.三、解答题(共66分)19、见解析(2)∠EBC=25°【分析】(1)根据AAS即可推出△ABE和△DCE全等.(2)根据三角形全等得出EB=EC,推出∠EBC=∠ECB,根据三角形的外角性质得出∠AEB=2∠EBC,代入求出即可【详解】解(1)证明:∵在△ABE和△DCE中,,∴△ABE≌△DCE(AAS)(2)∵△ABE≌△DCE,∴BE=EC,∴∠EBC=∠ECB,∵∠EBC+∠ECB=∠AEB=50°,∴∠EBC=25°20、(1)见解析;(2)见解析;(3)不一定成立,见解析.【解析】(1)求证AB=AC,就是求证∠B=∠C,利用斜边直角边定理(HL)证明Rt△OEB≌Rt△OFC即可;
(2)首先得出Rt△OEB≌Rt△OFC,则∠OBE=∠OCF,由等边对等角得出∠OBC=∠OCB,进而得出∠ABC=∠ACB,由等角对等边即可得AB=AC;
(3)不一定成立,当∠A的平分线所在直线与边BC的垂直平分线重合时,有AB=AC;否则,AB≠AC.【详解】(1)证明:∵点O在边BC上,OE⊥AB,OF⊥AC,点O到△ABC的两边AB,AC所在直线的距离相等,
∴OE=OF,在Rt△OEB和Rt△OFC中∴Rt△OEB≌Rt△OFC(HL),
∴∠ABC=∠ACB,
∴AB=AC;
(2)证明:过点O分别作OE⊥AB于E,OF⊥AC于F,
由题意知,OE=OF.∠BEO=∠CFO=90°,
∵在Rt△OEB和Rt△OFC中
∴Rt△OEB≌Rt△OFC(HL),
∴∠OBE=∠OCF,
又∵OB=OC,
∴∠OBC=∠OCB,
∴∠ABC=∠ACB,
∴AB=AC;
(3)解:不一定成立,当∠A的平分线所在直线与边BC的垂直平分线重合时AB=AC,否则AB≠AC.(如示例图)
【点睛】本题考查全等三角形的判定和性质,等腰三角形的判定和性质,熟练掌握全等三角形的判定方法是解题的关键.21、(1)a=2,b=1;(2)P(1,0);(3)P(﹣1,2)或(﹣2,﹣2).【分析】(1)将利用完全平方公式变形得到(a-2)2+|2a-b|=0,即可求出a、b的值;(2)由b的值得到OB=1,根据得到OP=OB=1,即可得到点P的坐标;(3)由可分两种情况求使为直角三角形,当∠ABP=90°时,当∠BAP=90°时,利用等腰三角形的性质证明三角形全等,由此得到点P的坐标.【详解】(1)∵a2-1a+1+|2a-b|=0,∴(a-2)2+|2a-b|=0,∴a=2,b=1.(2)由(1)知,b=1,∴B(0,1).∴OB=1.∵点P在直线AB的左侧,且在x轴上,∠APB=15°∴OP=OB=1,∴P(1,0).(3)由(1)知a=﹣2,b=1,∴A(2,0),B(0,1)∴OA=2,OB=1,∵△ABP是直角三角形,且∠APB=15°,∴只有∠ABP=90°或∠BAP=90°,如图,①当∠ABP=90°时,∵∠BAP=15°,∴∠APB=∠BAP=15°.∴AB=PB.过点P作PC⊥OB于C,∴∠BPC+∠CBP=90°,∵∠CBP+∠ABO=90°,∴∠ABO=∠BPC.在△AOB和△BCP中,,∴△AOB≌△BCP(AAS).∴PC=OB=1,BC=OA=2.∴OC=OB﹣BC=2.∴P(-1,2)②当∠BAP=90°时,过点P'作P'D⊥OA于D,同①的方法得,△ADP'≌△BOA.∴DP'=OA=2,AD=OB=1.∴OD=AD﹣OA=2.∴P'(﹣2,-2).即:满足条件的点P(﹣1,2)或(﹣2,﹣2).【点睛】此题考查等腰直角三角形的性质,完全平方公式,三角形全等的判定及性质,分类讨论直角三角形形成的点的坐标.22、24万人.【分析】设2002年地铁每小时客运量x万人,则2017年地铁每小时客运量4x万人,根据等量关系“2002年客运240万人所用的时间-30=2017年客运240万人所用的时间”列出方程,解方程即可.【详解】解:设2002年地铁每小时客运量x万人,则2017年地铁每小时客运量4x万人,由题意得,解得x=6经检验x=6是分式方程的解答:2017年每小时客运量24万人.23、CE=2AD,证明详见解析【分析】延长AD至点N使DN=AD,AN交CE于点M,连接CN,根据等腰三角形的性质得到MA=ME,根据全等三角形的性质得到∠N=∠DAB.根据平行线的性质得到∠3=∠AEC.求得MC=MN,于是得到结论.【详解】解:CE=2AD;理由:延长AD至点N使DN=AD,AN交CE于点M,连接CN,∵∠DAB=∠AEC,∴MA=ME,∵AB=AC,AD⊥BC,∴∠CAD=∠DAB,BD=CD,∠1=∠2=90°.∴ABD≌NCD(AAS),∴∠N=∠DAB.∴CN∥AE.∴∠3=∠AEC.∴∠3=∠N.∴MC=MN,∴CE=MC+ME=MN+MA=AN=2AD.【点睛】本题考查了全等三角形的判定和性质,平行线的判定和性质,等腰三角形的判定和性质,正确的作出辅助线是解题的关键.24、(1)见解析;(2),,;(3)【分析】(1)根据轴对称的性质,找出△ABC各顶点关于x轴对称的对应点,然后顺次连接各顶点即可得;(2)根据所画图形可直接写出,,的坐标;(3)直接利用△ABC所在矩形面积减去周围三角形面积进而得出答案.【详解】解:(1)如图,为所求.(2),,.(3)【点睛】此题主要考查了轴对称变换以及三角形面积求法,正确得出对应点位置是解题关键.25、证明见解析【解析】试题分析:由角平分线的定义可知:∠EAD=∠EAC,再由三角形的外角的性质可得∠EAD=∠B,然后利用平行线的判定定理可证明出结论.试题解析:∵AD平分∠EAC,∴∠EAD=∠EAC.又∵∠B=∠C,∠EAC=∠B+∠C,∴∠B=∠EAC.∴∠EAD=∠B.所以AD∥BC.考点:1.平行线的性质;(2)角平分线的定义
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 健康饮食 快乐成长-幼儿进餐习惯培养与健康管理
- 少儿第五人格角色创作(初级)-美术课件
- 幼儿教育市场营销战略
- 2025智能家居购销合同
- 2025电子产品销售合同范本
- 2025房屋租赁合同协议范例
- 2024-2025统编版道德与法治二年级下册半期考测试卷附答案
- 2024-2025苏教版科学一年级下册第二单元测试卷附答案
- 清明节课程故事幼儿园
- 2025设备租赁合同示范文本
- 2025届新高考语文热点冲刺复习:新高考作文教学及备考策略
- (高清版)DB3204∕T 1024-2021 污水排入城镇污水管网排放口设置技术规范
- 海南省海口市(2024年-2025年小学六年级语文)部编版期中考试(下学期)试卷及答案
- 旅游消费者行为学课件:社会群体与旅游消费者行为
- 《材料成形测试技术》课件-第7章 轧制过程在线检测
- 2025年春新北师大版数学一年级下册课件 第5单元 第5课时 有趣的算式
- 部编版四年级语文下册第六单元教学计划(含课标分析、教材分析、单元教学目标、教学策略、学情分析等)
- 小学生情绪管理课件幽默
- 短视频与直播电商教学大纲教案
- 儿童呼吸系统疾病家庭雾化吸入治疗临床实践指南(2025版)解读
- 外科感染-有芽孢厌氧菌感染(外科课件)
评论
0/150
提交评论