多元线性回归spss案例_第1页
多元线性回归spss案例_第2页
多元线性回归spss案例_第3页
多元线性回归spss案例_第4页
多元线性回归spss案例_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

多元线性回归spss案例【篇一:多元线性回归spss案例】多元线性回归,主要是研究一个因变量与多个自变量之间的相关关系,跟一元回归原理差不多,区别在于影响因素(自变量)更多些而已,例如:一元线性回归方程为:毫无疑问,多元线性回归方程应该为:上图中的x1,x2,xp分别代表自变量xp截止,代表有p个自变量,如果有n组样本,那么这个多元线性回归,将会组成一个矩阵,如下图所示:那么,多元线性回归方程矩阵形式为:其中:代表随机误差,其中随机误差分为:可解释的误差和不可解释的误差,随机误差必须满足以下四个条件,多元线性方程才有意义(一元线性方程也一样)1:服成正太分布,即指:随机误差必须是服成正太分别的随机变量。2:无偏性假设,即指:期望值为03:同共方差性假设,即指,所有的随机误差变量方差都相等4:独立性假设,即指:所有的随机误差变量都相互独立,可以用协方差解释。今天跟大家一起讨论一下,spss一多元线性回归的具体操作过程,下面以教程教程数据为例,分析汽车特征与汽车销售量之间的关系。通过分析汽车特征跟汽车销售量的关系,建立拟合多元线性回归模型。数据如下图所示:点击分析回归线性进入如下图所示的界面:将销售量作为因变量拖入因变量框内,将车长,车宽,耗油率,车净重等10个自变量拖入自变量框内,如上图所示,在方法旁边,选择逐步,当然,你也可以选择其它的方式,如果你选择进入默认的方式,在分析结果中,将会得到如下图所示的结果:(所有的自变量,都会强行进入)如果你选择逐步这个方法,将会得到如下图所示的结果:(将会根据预先设定的f统计量的概率值进行筛选,最先进入回归方程的自变量应该是跟因变量关系最为密切,贡献最大的,如下图可以看出,车的价格和车轴跟因变量关系最为密切,符合判断条件的概率值必须小于0・05,当概率值大于等于0・1时将会被剔除)选择变量(e)框内,我并没有输入数据,如果你需要对某个自变量进行条件筛选,可以将那个自变量,移入选择变量框内,有一个前提就是:该变量从未在另一个目标列表中出现!,再点击规则设定相应的筛选条件即可,如下图所示:点击统计量弹出如下所示的框,如下所示:在回归系数下面勾选估计,在右侧勾选模型拟合度和共线性诊断两个选项,再勾选个案诊断再点击离群值一般默认值为3,(设定异常值的依据,只有当残差超过3倍标准差的观测才会被当做异常值)点击继续。提示:共线性检验,如果有两个或两个以上的自变量之间存在线性相关关系,就会产生多重共线性现象。这时候,用最小二乘法估计的模型参数就会不稳定,回归系数的估计值很容易引起误导或者导致错误的结论。所以,需要勾选共线性诊断来做判断通过容许度可以计算共线性的存在与否?容许度tol=1-ri平方或方差膨胀因子(vif):vif=1/1-ri平方,其中ri平方是用其他自变量预测第i个变量的复相关系数,显然,vif为tol的倒数,tol的值越小,vif的值越大,自变量xi与其他自变量之间存在共线性的可能性越大。提供三种处理方法:1:从有共线性问题的变量里删除不重要的变量2:增加样本量或重新抽取样本。3:采用其他方法拟合模型,如领回归法,逐步回归法,主成分分析法。再点击绘制选项,如下所示:上图中:dependent(因变量)zpred(标准化预测值)zresid(标准化残差)dresid(剔除残差)adjpred(修正后预测值)srsid(学生化残差)sdresid(学生化剔除残差)般我们大部分以自变量作为x轴,用残差作为y轴,但是,也不要忽略特殊情况,这里我们以zpred(标准化预测值)作为x轴,分别用sdresid(血生化剔除残差)和zresid(标准化残差)作为y轴,分别作为两组绘图变量。再点击保存按钮,进入如下界面:如上图所示:勾选距离下面的cook距离选项(cook距离,主要是指:把一个个案从计算回归系数的样本中剔除时所引起的残差大小,cook距离越大,表明该个案对回归系数的影响也越大)在预测区间勾选均值和单值点击继续按钮,再点击确定按钮,得到如下所示的分析结果:(此分析结果,采用的是逐步法得到的结果)接着上一期的多元线性回归解析里面的内容,上一次,没有写结果分析,这次补上,结果分析如下所示:结果分析1:由于开始选择的是逐步法,逐步法是向前和向后的结合体,从结果可以看出,最先进入线性回归模型的是priceinthousands建立了模型1,紧随其后的是wheelbase建立了模型2,所以,模型中有此方法有个概率值,当小于等于0.05时,进入线性回归模型(最先进入模型的,相关性最强,关系最为密切)当大于等0・1时,从线性模型中剔除结果分析:1:从模型汇总中可以看出,有两个模型,(模型1和模型2)从r2拟合优度来看,模型2的拟合优度明显比模型1要好一些(0.4220.300)2:从anova表中,可以看出模型2中的回归平方和为115.311,残差平方和为153.072,由于总平方和=回归平方和+残差平方和,由于残差平方和(即指随即误差,不可解释的误差)由于回归平方和跟残差平方和几乎接近,所有,此线性回归模型只解释了总平方和的一半,3:根据后面的f统计量的概率值为0・00,由于0.000.01,随着自变量的引入,其显著性概率值均远小于0.01,所以可以显著地拒绝总体回归系数为0的原假设,通过anova方差分析表可以看出销售量与价格和轴距之间存在着线性关系,至于线性关系的强弱,需要进一步进行分析。结果分析:1:从已排除的变量表中,可以看出:模型2中各变量的t检的概率值都大于0.05所以,不能够引入线性回归模型必须剔除。从系数a表中可以看出:1:多元线性回归方程应该为:销售量=-1.822-0.055*价格+0.061*轴距但是,由于常数项的sig为(0.1160.1)所以常数项不具备显著性,所以,我们再看后面的标准系数,在标准系数一列中,可以看到常数项没有数值,已经被剔除所以:标准化的回归方程为:销售量=-0.59*价格+0,356*轴距2:再看最后一列共线性统计量,其中价格和轴距两个容差和vif都一样,而且vif都为1.012,且都小于5,所以两个自变量之间没有出现共线性,容忍度和膨胀因子是互为倒数关系,容忍度越小,膨胀因子越大,发生共线性的可能性也越大从共线性诊断表中可以看出:1:共线性诊断采用的是特征值的方式,特征值主要用来刻画自变量的方差,诊断自变量间是否存在较强多重共线性的另一种方法是利用主成分分析法,基本思想是:如果自变量间确实存在较强的相关关系,那么它们之间必然存在信息重叠,于是就可以从这些自变量中提取出既能反应自变量信息(方差),而且有相互独立的因素(成分)来,该方法主要从自变量间的相关系数矩阵出发,计算相关系数矩阵的特征值,得到相应的若干成分。从上图可以看出:从自变量相关系数矩阵出发,计算得到了三个特征值(模型2中),最大特征值为2.847,最小特征值为0.003条件索引=最大特征值/相对特征值再进行开方(即特征值2的条件索引为2.847/0.150再开方=4.351)标准化后,方差为1,每一个特征值都能够刻画某自变量的一定比例,所有的特征值能将刻画某自变量信息的全部,于是,我们可以得到以下结论:1:价格在方差标准化后,第一个特征值解释了其方差的0.02,第二个特征值解释了0.97,第三个特征值解释了0.002:轴距在方差标准化后,第一个特征值解释了其方差的0.00,第二个特征值解释了0.01,第三个特征值解释了0.99可以看出:没有一个特征值,既能够解释价格又能够解释轴距所以价格和轴距之间存在共线性较弱。前面的结论进一步得到了论证。(残差统计量的表中数值怎么来的,这个计算过程,我就不写了)从上图可以得知:大部分自变量的残差都符合正太分布,只有一,两处地方稍有偏离,如图上的(-5到-3区域的)处理偏离状态【篇二:多元线性回归spss案例】表1-2描述性数据汇总标准化后得到的数据值,以下的回归分析将使用标准化数据。如图1-5所示:图1-5数据标准化我们还可以通过描述性分析中的“”来得到各个变量的众数,均值等,还可以根据这些量绘制直方图。我们选取个别变量(能源消费总量)的直方图,可以看到我们因变量基本符合正态分布。如图1-6所示:图1-6能源消费总量1.2回归分析我们本次实验主要考察地区能源消费总额(因变量)与煤炭消费量、焦炭消费量、原油消费量、原煤产量、焦炭产量、原油产量之间的关系。以下的回归分析所涉及只包括以上几个变量,并使用标准化之后的数据。参数设置单击菜单栏“”--"”--"”,将弹出如图1-7所示的对话框,将通过选择因变量和自变量来构建线性回归模型。因变量:标准化能源消费总额;自变量:标准化煤炭消费量、标准化焦炭消费量、标准化原油消费量、标准化原煤产量、标准化焦炭产量、标准化原油产量。自变量方法选择:进入,个案标签使用地名,不使用权重最小二乘法回归分析一即wls权重为空。图1-7选择线性回归变量还需要设置统计量的参数,我们选择回归系数中的“”和其他项中的“”。选中估计可输出回归系数b及其标准误,t值和p值,还有标准化的回归系数beta。选中模型拟合度复选框:模型拟合过程中进入、退出的变量的列表,以及一些有关拟合优度的检验:r,r2和调整的r2,标准误及方差分析表。如图1-8所示:图1-8设置回归分析统计量在设置绘制选项的时候,我们选择绘制标准化残差图,其中的正态概率图是rankit图。同时还需要画出残差图,y轴选择:zresid,x轴选择:zpred。如图1-9所示:图1-9设置绘制左上框中各项的意义分别为:.许多时候我们需要将回归分析的结果存储起来,然后用得到的残差、预测值等做进一步的分析,“保存”按钮就是用来存储中间结果的。可以存储的有:预测值系列、残差系列、距离(distances)系列、预测值可信区间系列、波动统计量系列。本次实验暂时不保存任何项。.设置

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论