版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年福建省南平市某学校数学高职单招模拟考试(含答案)学校:________班级:________姓名:________考号:________
一、单选题(10题)1.若圆C1:x2+y2=1与圆C2:x2+y2-6x-8y+m=0外切,则m=()A.21B.19C.9D.-11
2.从1,2,3,4,5这5个数中,任取四个上数组成没有重复数字的四个数,其中5的倍数的概率是()A.
B.
C.
D.
3.A.B.C.D.
4.直线x-y=0,被圆x2+y2=1截得的弦长为()A.
B.1
C.4
D.2
5.设A-B={x|x∈A且xB},若M={4,5,6,7,8},N={7,8,9,10}则M-N等于()A.{4,5,6,7,8,9,10}B.{7,8}C.{4,5,6,9,10}D.{4,5,6}
6.下列函数中,在区间(0,)上是减函数的是()A.y=sinxB.y=cosxC.y=xD.y=lgx
7.若102x=25,则10-x等于()A.
B.
C.
D.
8.设集合M={1,2,4,5,6},集合N={2,4,6},则M∩N=()A.{2,4,5,6}B.{4,5,6}C.{1,2,3,4,5,6}D.{2,4,6}
9.若不等式|ax+2|<6的解集为(-1,2),则实数a等于()A.8B.2C.-4D.-8
10.下列函数中是偶函数的是()A.y=x|x|B.y=sinx|x|C.y=x2+1D.y=xsinx+cosx
二、填空题(10题)11.函数f(x)=sin2x-cos2x的最小正周期是_____.
12.
13.
14.若f(x-1)=x2-2x+3,则f(x)=
。
15.
16.已知函数则f(f⑶)=_____.
17.已知向量a=(1,-1),b(2,x).若A×b=1,则x=______.
18.sin75°·sin375°=_____.
19.某校有老师200名,男学生1200名,女学生1000名,现用分层抽样的方法从所有师生中抽取一个容量为240的样本,则从女生中抽取的人数为______.
20.的值是
。
三、计算题(5题)21.己知{an}为等差数列,其前n项和为Sn,若a3=6,S3=12,求公差d.
22.设函数f(x)既是R上的减函数,也是R上的奇函数,且f(1)=2.(1)求f(-1)的值;(2)若f(t2-3t+1)>-2,求t的取值范围.
23.求焦点x轴上,实半轴长为4,且离心率为3/2的双曲线方程.
24.从含有2件次品的7件产品中,任取2件产品,求以下事件的概率.(1)恰有2件次品的概率P1;(2)恰有1件次品的概率P2
.
25.有四个数,前三个数成等差数列,公差为10,后三个数成等比数列,公比为3,求这四个数.
四、证明题(5题)26.己知
a
=(-1,2),b
=(-2,1),证明:cos〈a,b〉=4/5.
27.若x∈(0,1),求证:log3X3<log3X<X3.
28.己知x∈(1,10),A=lg2x,B=lgx2,证明:A<B.
29.长、宽、高分别为3,4,5的长方体,沿相邻面对角线截取一个三棱锥(如图).求证:剩下几何体的体积为三棱锥体积的5倍.
30.己知sin(θ+α)=sin(θ+β),求证:
五、简答题(5题)31.已知函数(1)求函数f(x)的最小正周期及最值(2)令判断函数g(x)的奇偶性,并说明理由
32.己知边长为a的正方形ABCD,PA丄底面ABCD,PA=a,求证,PC丄BD
33.已知等差数列的前n项和是求:(1)通项公式(2)a1+a3+a5+…+a25的值
34.在ABC中,AC丄BC,ABC=45°,D是BC上的点且ADC=60°,BD=20,求AC的长
35.如图四面体ABCD中,AB丄平面BCD,BD丄CD.求证:(1)平面ABD丄平面ACD;(2)若AB=BC=2BD,求二面角B-AC-D的正弦值.
六、综合题(5题)36.己知椭圆与抛物线y2=4x有共同的焦点F2,过椭圆的左焦点F1作倾斜角为的直线,与椭圆相交于M、N两点.求:(1)直线MN的方程和椭圆的方程;(2)△OMN的面积.
37.
(1)求该直线l的方程;(2)求圆心该直线上且与两坐标轴相切的圆的标准方程.
38.在△ABC中,角A,B,C的对边分别为a,b,c,且bcosC=(3a-c)cosB.(1)求cosB的值;(2)
39.
40.己知点A(0,2),5(-2,-2).(1)求过A,B两点的直线l的方程;(2)己知点A在椭圆C:上,且(1)中的直线l过椭圆C的左焦点。求椭圆C的标准方程.
参考答案
1.C圆与圆相切的性质.圆C1的圆心C1(0,0),半径r1=1,圆C2的方程可化为(x-3)2+(y-4)2=25-m,所以圆心C2(3,4),
2.A
3.A
4.D直线与圆相交的性质.直线x-y=0过圆心(0,0),故该直线被圆x2+y2=1所截弦长为圆的直径的长度2.
5.D
6.B,故在(0,π/2)是减函数。
7.B
8.D集合的计算∵M={1,2,3,4,5,6},N={2,4,6},∴M∩N={2,4,6}
9.C
10.D
11.πf(x)=2(1/2sin2x-1/2cos2x)=2sin(2x-π/4),因此最小正周期为π。
12.{x|0<x<3}
13.
14.
15.外心
16.2e-3.函数值的计算.由题意得,f(3)=㏒3(9-6)=1,所以f(f(3))=f⑴=2e-3.
17.1平面向量的线性运算.由题得A×b=1×2+(-1)×x=2-x=1,x=1。
18.
,
19.100分层抽样方法.各层之比为200:1200:1000=1:6:5推出从女生中抽取的人数240×5/12=100.
20.
,
21.
22.解:(1)因为f(x)=在R上是奇函数所以f(-x)=-f(x),f(-1)=-f(1)=-2(2)f(t2-3t+1)>-2=f(-1)因为f(x)=在R上是减函数,t2-3t+1<-1所以1<t<2
23.解:实半轴长为4∴a=4e=c/a=3/2,∴c=6∴a2=16,b2=c2-a2=20双曲线方程为
24.
25.
26.
27.
28.证明:考虑对数函数y=lgx的限制知
:当x∈(1,10)时,y∈(0,1)A-B=lg2
x-lgx2
=lgx·lgx-2lgx=lgx(lgx-2)∵lgx∈(0,1)∴lgx-2<0A-B<0∴A<B
29.证明:根据该几何体的特征,可知所剩的几何体的体积为长方体的体积减去所截的三棱锥的体积,即
30.
31.(1)(2)∴又∴函数是偶函数
32.证明:连接ACPA⊥平面ABCD,PC是斜线,BD⊥ACPC⊥BD(三垂线定理)
33.
34.在指数△ABC中,∠ABC=45°,AC=BC在直角△ADC中,∠ADC=60°,CD=ACCD=BC-BD,BD=20则,则
35.
36.
37.解:(1)斜率k=5/3,设直线l的方程5x-3y+m=0,直线l经过点(0,-8/3),所以m=8,直线l的方程为5x-3y-8=0。(2)设圆心为C(a,b),圆与两坐标轴相切,故a=±b又圆心在直线5x-3y-8=0上,将a=b或a=-b代入直线方程得:a=4或a=1当a=4时,b
=4,此时r=4,圆的方程为(x-4)2
+(y-4)2=16当a=1时,b
=-1,此时r=1,圆的方程为(x-1)2
+(y+1)2=1
38.
39.
40.解:(1)直线l过A(0,2),B(-2,-2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 策划公司前台工作总结
- 运输物流行业顾问工作总结
- 2024新年寄语汇编(32篇)
- 制冷技术转让协议书(2篇)
- 创业合作投资协议书(2篇)
- 2024年计算机专业实习心得体会
- 易错点08 中国近代史时间问题-备战2023年中考历史考试易错题(解析版)
- 地理中国的世界遗产课件中图版选修
- 2025届陕西省咸阳市武功县中考生物全真模拟试题含解析
- 《公共政策过程》课件
- 2025年中国烟草总公司湖北省公司校园招聘227人高频重点提升(共500题)附带答案详解
- 2024版带货主播电商平台合作服务合同范本3篇
- 2025公司资产划转合同
- 2024-2030年中国铝汽车紧固件行业销售规模与盈利前景预测报告
- 广东省清远市2023-2024学年高一上学期期末质量检测物理试题(解析版)
- 2024-2025学年人教版数学五年级上册期末检测试卷(含答案)
- 《外盘期货常识》课件
- 【MOOC】土力学-西安交通大学 中国大学慕课MOOC答案
- 医院医保科工作总结
- 2024-2025学年译林版八年级英语上学期重点词汇短语句子归纳【考点清单】
- 2024年企业采购部年终总结及今后计划(3篇)
评论
0/150
提交评论