广州市岭南2023学年高考数学全真模拟密押卷含解析_第1页
广州市岭南2023学年高考数学全真模拟密押卷含解析_第2页
广州市岭南2023学年高考数学全真模拟密押卷含解析_第3页
广州市岭南2023学年高考数学全真模拟密押卷含解析_第4页
广州市岭南2023学年高考数学全真模拟密押卷含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2023年高考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知焦点为的抛物线的准线与轴交于点,点在抛物线上,则当取得最大值时,直线的方程为( )A或B或C或D2关于函数,有下述三个

2、结论:函数的一个周期为;函数在上单调递增;函数的值域为.其中所有正确结论的编号是( )ABCD3已知六棱锥各顶点都在同一个球(记为球)的球面上,且底面为正六边形,顶点在底面上的射影是正六边形的中心,若,则球的表面积为( )ABCD4设,命题“存在,使方程有实根”的否定是( )A任意,使方程无实根B任意,使方程有实根C存在,使方程无实根D存在,使方程有实根5已知函数,若所有点,所构成的平面区域面积为,则( )ABC1D6已知命题p:“”是“”的充要条件;,则( )A为真命题B为真命题C为真命题D为假命题7执行如图所示的程序框图,则输出的( )A2B3CD8在明代程大位所著的算法统宗中有这样一首歌

3、谣,“放牧人粗心大意,三畜偷偷吃苗青,苗主扣住牛马羊,要求赔偿五斗粮,三畜户主愿赔偿,牛马羊吃得异样马吃了牛的一半,羊吃了马的一半”请问各畜赔多少?它的大意是放牧人放牧时粗心大意,牛、马、羊偷吃青苗,青苗主人扣住牛、马、羊向其主人要求赔偿五斗粮食(1斗=10升),三畜的主人同意赔偿,但牛、马、羊吃的青苗量各不相同马吃的青苗是牛的一半,羊吃的青苗是马的一半问羊、马、牛的主人应该分别向青苗主人赔偿多少升粮食?( )ABCD9在我国传统文化“五行”中,有“金、木、水、火、土”五个物质类别,在五者之间,有一种“相生”的关系,具体是:金生水、水生木、木生火、火生土、土生金.从五行中任取两个,这二者具有相

4、生关系的概率是( )A0.2B0.5C0.4D0.810已知数列的前项和为,且,则( )ABCD11已知实数满足则的最大值为( )A2BC1D012某校8位学生的本次月考成绩恰好都比上一次的月考成绩高出50分,则以该8位学生这两次的月考成绩各自组成样本,则这两个样本不变的数字特征是( )A方差B中位数C众数D平均数二、填空题:本题共4小题,每小题5分,共20分。13曲线在点处的切线方程为_.14如图,半圆的直径AB6,O为圆心,C为半圆上不同于A、B的任意一点,若P为半径OC上的动点,则的最小值为 .15若,则=_, = _.16某班星期一共八节课(上午、下午各四节,其中下午最后两节为社团活动

5、),排课要求为:语文、数学、外语、物理、化学各排一节,从生物、历史、地理、政治四科中选排一节.若数学必须安排在上午且与外语不相邻(上午第四节和下午第一节不算相邻),则不同的排法有_种.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)山东省2020年高考将实施新的高考改革方案.考生的高考总成绩将由3门统一高考科目成绩和自主选择的3门普通高中学业水平等级考试科目成绩组成,总分为750分.其中,统一高考科目为语文、数学、外语,自主选择的3门普通高中学业水平等级考试科目是从物理、化学、生物、历史、政治、地理6科中选择3门作为选考科目,语、数、外三科各占150分,选考科目成绩

6、采用“赋分制”,即原始分数不直接用,而是按照学生分数在本科目考试的排名来划分等级并以此打分得到最后得分.根据高考综合改革方案,将每门等级考试科目中考生的原始成绩从高到低分为A、B+、B、C+、C、D+、D、E共8个等级。参照正态分布原则,确定各等级人数所占比例分别为3%、7%、16%、24%、24%、16%、7%、3%.等级考试科目成绩计入考生总成绩时,将A至E等级内的考生原始成绩,依照等比例转换法则,分别转换到91-100、81-90、71-80,61-70、51-60、41-50、31-40、21-30八个分数区间,得到考生的等级成绩.举例说明.某同学化学学科原始分为65分,该学科C+等级

7、的原始分分布区间为5869,则该同学化学学科的原始成绩属C+等级.而C+等级的转换分区间为6170,那么该同学化学学科的转换分为:设该同学化学科的转换等级分为x,69-6565-58=70-x四舍五入后该同学化学学科赋分成绩为67.(1)某校高一年级共2000人,为给高一学生合理选科提供依据,对六个选考科目进行测试,其中物理考试原始成绩基本服从正态分布N(60,12(i)若小明同学在这次考试中物理原始分为84分,等级为B+,其所在原始分分布区间为8293,求小明转换后的物理成绩;(ii)求物理原始分在区间(72,84)的人数;(2)按高考改革方案,若从全省考生中随机抽取4人,记X表示这4人中等

8、级成绩在区间61,80的人数,求X的分布列和数学期望.(附:若随机变量N(,2),则P-+=0.68218(12分)已知直线的参数方程为(为参数),以坐标原点为极点,轴的非负半轴为极轴且取相同的单位长度建立极坐标系,曲线的极坐标方程为.(1)求直线的普通方程及曲线的直角坐标方程;(2)设点,直线与曲线交于两点,求的值.19(12分)如图,在四边形ABCD中,AB/CD,ABD=30,AB2CD2AD2,DE平面ABCD,EF/BD,且BD2EF()求证:平面ADE平面BDEF;()若二面角CBFD的大小为60,求CF与平面ABCD所成角的正弦值20(12分)某企业原有甲、乙两条生产线,为了分析

9、两条生产线的效果,先从两条生产线生产的大量产品中各抽取了100件产品作为样本,检测一项质量指标值该项指标值落在内的产品视为合格品,否则为不合格品乙生产线样本的频数分布表质量指标合计频数2184814162100(1)根据甲生产线样本的频率分布直方图,以从样本中任意抽取一件产品且为合格品的频率近似代替从甲生产线生产的产品中任意抽取一件产品且为合格品的概率,估计从甲生产线生产的产品中任取5件恰有2件为合格品的概率;(2)现在该企业为提高合格率欲只保留其中一条生产线,根据上述图表所提供的数据,完成下面的列联表,并判断是否有90%把握认为该企业生产的这种产品的质量指标值与生产线有关?若有90%把握,请

10、从合格率的角度分析保留哪条生产线较好?甲生产线乙生产线合计合格品不合格品合计附:,0.1500.1000.0500.0250.0100.0052.0722.7063.8415.0246.6357.87921(12分)选修4-4:坐标系与参数方程已知曲线的参数方程是(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程是.(1)写出的极坐标方程和的直角坐标方程;(2)已知点、的极坐标分别为和,直线与曲线相交于,两点,射线与曲线相交于点,射线与曲线相交于点,求的值.22(10分)已知数列满足对任意都有,其前项和为,且是与的等比中项,(1)求数列的通项公式;(2)已知数列满足,

11、设数列的前项和为,求大于的最小的正整数的值参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1A【解析】过作与准线垂直,垂足为,利用抛物线的定义可得,要使最大,则应最大,此时与抛物线相切,再用判别式或导数计算即可.【详解】过作与准线垂直,垂足为,则当取得最大值时,最大,此时与抛物线相切,易知此时直线的斜率存在,设切线方程为,则.则,则直线的方程为.故选:A.【点睛】本题考查直线与抛物线的位置关系,涉及到抛物线的定义,考查学生转化与化归的思想,是一道中档题.2C【解析】用周期函数的定义验证.当时,再利用单调性判断.根据平移变换,函数的值

12、域等价于函数的值域,而,当时,再求值域.【详解】因为,故错误;当时,所以,所以在上单调递增,故正确;函数的值域等价于函数的值域,易知,故当时,故正确.故选:C.【点睛】本题考查三角函数的性质,还考查推理论证能力以及分类讨论思想,属于中档题.3D【解析】由题意,得出六棱锥为正六棱锥,求得,再结合球的性质,求得球的半径,利用表面积公式,即可求解.【详解】由题意,六棱锥底面为正六边形,顶点在底面上的射影是正六边形的中心,可得此六棱锥为正六棱锥,又由,所以, 在直角中,因为,所以,设外接球的半径为,在中,可得,即,解得,所以外接球的表面积为.故选:D.【点睛】本题主要考查了正棱锥的几何结构特征,以及外

13、接球的表面积的计算,其中解答中熟记几何体的结构特征,熟练应用球的性质求得球的半径是解答的关键,着重考查了空间想象能力,以及推理与计算能力,属于中档试题.4A【解析】只需将“存在”改成“任意”,有实根改成无实根即可.【详解】由特称命题的否定是全称命题,知“存在,使方程有实根”的否定是“任意,使方程无实根”.故选:A【点睛】本题考查含有一个量词的命题的否定,此类问题要注意在两个方面作出变化:1.量词,2.结论,是一道基础题.5D【解析】依题意,可得,在上单调递增,于是可得在上的值域为,继而可得,解之即可.【详解】解:,因为,所以,在上单调递增,则在上的值域为,因为所有点所构成的平面区域面积为,所以

14、,解得,故选:D.【点睛】本题考查利用导数研究函数的单调性,理解题意,得到是关键,考查运算能力,属于中档题6B【解析】由的单调性,可判断p是真命题;分类讨论打开绝对值,可得q是假命题,依次分析即得解【详解】由函数是R上的增函数,知命题p是真命题对于命题q,当,即时,;当,即时,由,得,无解,因此命题q是假命题所以为假命题,A错误;为真命题,B正确;为假命题,C错误;为真命题,D错误故选:B【点睛】本题考查了命题的逻辑连接词,考查了学生逻辑推理,分类讨论,数学运算的能力,属于中档题.7B【解析】运行程序,依次进行循环,结合判断框,可得输出值.【详解】起始阶段有,第一次循环后,第二次循环后,第三次

15、循环后,第四次循环后,所有后面的循环具有周期性,周期为3,当时,再次循环输出的,,此时,循环结束,输出,故选:B【点睛】本题主要考查程序框图的相关知识,经过几次循环找出规律是关键,属于基础题型.8D【解析】设羊户赔粮升,马户赔粮升,牛户赔粮升,易知成等比数列,结合等比数列的性质可求出答案.【详解】设羊户赔粮升,马户赔粮升,牛户赔粮升,则成等比数列,且公比,则,故,.故选:D.【点睛】本题考查数列与数学文化,考查了等比数列的性质,考查了学生的运算求解能力,属于基础题.9B【解析】利用列举法,结合古典概型概率计算公式,计算出所求概率.【详解】从五行中任取两个,所有可能的方法为:金木、金水、金火、金

16、土、木水、木火、木土、水火、水土、火土,共种,其中由相生关系的有金水、木水、木火、火土、金土,共种,所以所求的概率为.故选:B【点睛】本小题主要考查古典概型的计算,属于基础题.10C【解析】根据已知条件判断出数列是等比数列,求得其通项公式,由此求得.【详解】由于,所以数列是等比数列,其首项为,第二项为,所以公比为.所以,所以.故选:C【点睛】本小题主要考查等比数列的证明,考查等比数列通项公式,属于基础题.11B【解析】作出可行域,平移目标直线即可求解.【详解】解:作出可行域:由得,由图形知,经过点时,其截距最大,此时最大得,当时,故选:B【点睛】考查线性规划,是基础题.12A【解析】通过方差公

17、式分析可知方差没有改变,中位数、众数和平均数都发生了改变.【详解】由题可知,中位数和众数、平均数都有变化.本次和上次的月考成绩相比,成绩和平均数都增加了50,所以没有改变,根据方差公式可知方差不变.故选:A【点睛】本题主要考查样本的数字特征,意在考查学生对这些知识的理解掌握水平.二、填空题:本题共4小题,每小题5分,共20分。13【解析】求导,得到和,利用点斜式即可求得结果.【详解】由于,所以,由点斜式可得切线方程为.故答案为:.【点睛】本题考查利用导数的几何意义求切线方程,属基础题.14.【解析】.15128 21 【解析】令,求得的值.利用展开式的通项公式,求得的值.【详解】令,得.展开式

18、的通项公式为,当时,为,即.【点睛】本小题主要考查二项式展开式的通项公式,考查赋值法求解二项式系数有关问题,属于基础题.161344【解析】分四种情况讨论即可【详解】解:数学排在第一节时有:数学排在第二节时有:数学排在第三节时有:数学排在第四节时有: 所以共有1344种故答案为:1344【点睛】考查排列、组合的应用,注意分类讨论,做到不重不漏;基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17 (1)(i)83.;(ii)272.(2)见解析.【解析】(1)根据原始分数分布区间及转换分区间,结合所给示例,即可求得小明转换后的物理成绩;根据正态分布满足N60,122(2)

19、根据各等级人数所占比例可知在区间61,80内的概率为25,由二项分布即可求得X【详解】(1)(i)设小明转换后的物理等级分为x,93-8484-82求得x82.64.小明转换后的物理成绩为83分;(ii)因为物理考试原始分基本服从正态分布N60,所以P(7284)=P(6084)-P(6072)=0.136.所以物理原始分在区间72,84的人数为20000.136=272(人);(2)由题意得,随机抽取1人,其等级成绩在区间61,80内的概率为25随机抽取4人,则XB4,PX=0=3PX=2=CPX=4X的分布列为X01234P812162169616数学期望EX【点睛】本题考查了统计的综合应

20、用,正态分布下求某区间概率的方法,分布列及数学期望的求法,文字多,数据多,需要细心的分析和理解,属于中档题。18(1);(2)【解析】(1)直接利用转换关系的应用,把参数方程极坐标方程和直角坐标方程之间进行转换.(2)利用(1)的结论,进一步利用一元二次方程根和系数的关系式的应用求出结果.【详解】解:(1)直线的参数方程为(为参数),转换为直角坐标方程为.曲线的极坐标方程为.转换为,转换为直角坐标方程为.(2)直线的参数方程为(为参数),转换为标准式为(为参数),代入圆的直角坐标方程整理得,所以,.【点睛】本题属于基础本题考查的知识要点:主要考查极坐标,参数方程与普通方程互化,及求三角形面积需

21、要熟记极坐标系与参数方程的公式,及与解析几何相关的直线与曲线位置关系的一些解题思路19(1)见解析(2)【解析】分析:(1)根据面面垂直的判定定理即可证明平面ADE平面BDEF;(2)建立空间直角坐标系,利用空间向量法即可求CF与平面ABCD所成角的正弦值;也可以应用常规法,作出线面角,放在三角形当中来求解.详解:()在ABD中,ABD30,由AO2AB2+BD22ABBDcos30,解得BD,所以AB2+BD2=AB2,根据勾股定理得ADB90ADBD.又因为DE平面ABCD,AD平面ABCD,ADDE.又因为BDDED,所以AD平面BDEF,又AD平面ABCD,平面ADE平面BDEF, (

22、)方法一: 如图,由已知可得,则,则三角形BCD为锐角为30的等腰三角形. 则.过点C做,交DB、AB于点G,H,则点G为点F在面ABCD上的投影.连接FG,则,DE平面ABCD,则平面.过G做于点I,则BF平面,即角为二面角CBFD的平面角,则60.则,则.在直角梯形BDEF中,G为BD中点,设 ,则,则. ,则,即CF与平面ABCD所成角的正弦值为()方法二:可知DA、DB、DE两两垂直,以D为原点,建立如图所示的空间直角坐标系D-xyz.设DEh,则D(0,0,0),B(0,0),C(,h).,. 设平面BCF的法向量为m(x,y,z),则所以取x=,所以m(,-1,),取平面BDEF的

23、法向量为n(1,0,0),由,解得,则,又,则,设CF与平面ABCD所成角为,则sin=.故直线CF与平面ABCD所成角的正弦值为 点睛:该题考查的是立体几何的有关问题,涉及到的知识点有面面垂直的判定,线面角的正弦值,在求解的过程中,需要把握面面垂直的判定定理的内容,要明白垂直关系直角的转化,在求线面角的有关量的时候,有两种方法,可以应用常规法,也可以应用向量法.20(1)0.0081(2)见解析,保留乙生产线较好【解析】(1)先求出任取一件产品为合格品的频率,“从甲生产线生产的产品中任取5件,恰有2件为合格品”就相当于进行5次独立重复试验,恰好发生2次的概率用二项分布概率即可解决.(2)独立性检验算出的观测值即可判断.【详解】(1)根据甲生产线样本的频率分布直方图,样本中任取一件产品为合格品的频率为:设“从甲生产线生产的产品中任取一件且为合格品”为事件,事件发生的概率为,则由样本可估计那么“从甲生产线生产的产品中任取5件,恰有2件为合格品”就相当于进行

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论