江西省萍乡市重点名校2021-2022学年中考试题猜想数学试卷含解析_第1页
江西省萍乡市重点名校2021-2022学年中考试题猜想数学试卷含解析_第2页
江西省萍乡市重点名校2021-2022学年中考试题猜想数学试卷含解析_第3页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022中考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图,在等腰直角三角形ABC中,

2、C=90,D为BC的中点,将ABC折叠,使点A与点D重合,EF为折痕,则sinBED的值是( )ABCD2如图,DE是线段AB的中垂线,则点A到BC的距离是A4BC5D63下列各数中比1小的数是()A2B1C0D14如图所示的四个图案是四国冬季奥林匹克运动会会徽图案上的一部分图形,其中为轴对称图形的是()ABCD5某个密码锁的密码由三个数字组成,每个数字都是0-9这十个数字中的一个,只有当三个数字与所设定的密码及顺序完全相同,才能将锁打开,如果仅忘记了所设密码的最后那个数字,那么一次就能打开该密码的概率是( )A110B19C16如图是由5个相同的正方体搭成的几何体,其左视图是( )ABCD7

3、由6个大小相同的正方体搭成的几何体如图所示,比较它的正视图、左视图和俯视图的面积,则()A三个视图的面积一样大B主视图的面积最小C左视图的面积最小D俯视图的面积最小8甲、乙两车从A地出发,匀速驶向B地甲车以80km/h的速度行驶1h后,乙车才沿相同路线行驶乙车先到达B地并停留1h后,再以原速按原路返回,直至与甲车相遇在此过程中,两车之间的距离y(km)与乙车行驶时间x(h)之间的函数关系如图所示下列说法:乙车的速度是120km/h;m160;点H的坐标是(7,80);n7.1其中说法正确的有()A4个B3个C2个D1个9的一个有理化因式是()ABCD10若,则括号内的数是ABC2D8二、填空题

4、(共7小题,每小题3分,满分21分)11已知扇形的弧长为,圆心角为45,则扇形半径为_12某公司销售一种进价为21元的电子产品,按标价的九折销售,仍可获利20%,则这种电子产品的标价为_元.13如图,在RtABC中,ACB=90,AB的垂直平分线DE交AC于E,交BC的延长线于F,若F=30,DE=1,则BE的长是 14一个不透明的袋子中装有5个球,其中3个红球、2个黑球,这些球除颜色外无其它差别,现从袋子中随机摸出一个球,则它是黑球的概率是_15如图,以点为圆心的两个同心圆中,大圆的弦是小圆的切线,点是切点,则劣弧AB 的长为 .(结果保留)16已知正方形ABCD的边长为8,E为平面内任意一

5、点,连接DE,将线段DE绕点D顺时针旋转90得到DG,当点B,D,G在一条直线上时,若DG=2,则CE的长为_17某校园学子餐厅把WIFI密码做成了数学题,小亮在餐厅就餐时,思索了一会,输入密码,顺利地连接到了学子餐厅的网络,那么他输入的密码是_三、解答题(共7小题,满分69分)18(10分)如图,抛物线y=ax2+bx+c与x轴交于点A(1,0),B(4,0),与y轴交于点C(0,2)(1)求抛物线的表达式;(2)抛物线的对称轴与x轴交于点M,点D与点C关于点M对称,试问在该抛物线的对称轴上是否存在点P,使BMP与ABD相似?若存在,请求出所有满足条件的P点的坐标;若不存在,请说明理由19(

6、5分)先化简,再求值:(1+),其中x=+120(8分)(2017四川省内江市)小明随机调查了若干市民租用共享单车的骑车时间t(单位:分),将获得的数据分成四组,绘制了如下统计图(A:0t10,B:10t20,C:20t30,D:t30),根据图中信息,解答下列问题:(1)这项被调查的总人数是多少人?(2)试求表示A组的扇形统计图的圆心角的度数,补全条形统计图;(3)如果小明想从D组的甲、乙、丙、丁四人中随机选择两人了解平时租用共享单车情况,请用列表或画树状图的方法求出恰好选中甲的概率21(10分)某电视台的一档娱乐性节目中,在游戏PK环节,为了随机分选游戏双方的组员,主持人设计了以下游戏:用

7、不透明的白布包住三根颜色长短相同的细绳AA1、BB1、CC1,只露出它们的头和尾(如图所示),由甲、乙两位嘉宾分别从白布两端各选一根细绳,并拉出,若两人选中同一根细绳,则两人同队,否则互为反方队员若甲嘉宾从中任意选择一根细绳拉出,求他恰好抽出细绳AA1的概率;请用画树状图法或列表法,求甲、乙两位嘉宾能分为同队的概率22(10分)在平面直角坐标系xOy中,点A在x轴的正半轴上,点B的坐标为(0,4),BC平分ABO交x轴于点C(2,0)点P是线段AB上一个动点(点P不与点A,B重合),过点P作AB的垂线分别与x轴交于点D,与y轴交于点E,DF平分PDO交y轴于点F设点D的横坐标为t(1)如图1,

8、当0t2时,求证:DFCB;(2)当t0时,在图2中补全图形,判断直线DF与CB的位置关系,并证明你的结论;(3)若点M的坐标为(4,-1),在点P运动的过程中,当MCE的面积等于BCO面积的倍时,直接写出此时点E的坐标23(12分)甲、乙两组工人同时开始加工某种零件,乙组在工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍两组各自加工零件的数量y(件)与时间x(时)之间的函数图象如下图所示(1)求甲组加工零件的数量y与时间x之间的函数关系式(2)求乙组加工零件总量a的值24(14分)如图,在ABC中,点D,E分别在边AB,AC上,且BE平分ABC,ABE=ACD,BE,CD交于

9、点F(1)求证:;(2)请探究线段DE,CE的数量关系,并说明理由;(3)若CDAB,AD=2,BD=3,求线段EF的长参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解析】DEF是AEF翻折而成,DEFAEF,A=EDF,ABC是等腰直角三角形,EDF=45,由三角形外角性质得CDF+45=BED+45,BED=CDF,设CD=1,CF=x,则CA=CB=2,DF=FA=2-x,在RtCDF中,由勾股定理得,CF2+CD2=DF2,即x2+1=(2-x)2,解得x=,sinBED=sinCDF=故选:A2、A【解析】作于利用直角三角形30度角的性质即可解决问题【详

10、解】解:作于H垂直平分线段AB,故选A【点睛】本题考查线段的垂直平分线的性质,等腰三角形的性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型3、A【解析】根据两个负数比较大小,绝对值大的负数反而小,可得答案【详解】解:A、21,故A正确;B、11,故B错误;C、01,故C错误;D、11,故D错误;故选:A【点睛】本题考查了有理数大小比较,利用了正数大于0,0大于负数,注意两个负数比较大小,绝对值大的负数反而小4、D【解析】根据轴对称图形的概念求解【详解】解:根据轴对称图形的概念,A、B、C都不是轴对称图形,D是轴对称图形故选D【点睛】本题主要考查

11、轴对称图形,轴对称图形的判断方法:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形5、A【解析】试题分析:根据题意可知总共有10种等可能的结果,一次就能打开该密码的结果只有1种,所以P(一次就能打该密码),故答案选A.考点:概率.6、A【解析】根据三视图的定义即可判断【详解】根据立体图可知该左视图是底层有2个小正方形,第二层左边有1个小正方形故选A【点睛】本题考查三视图,解题的关键是根据立体图的形状作出三视图,本题属于基础题型7、C【解析】试题分析:根据三视图的意义,可知正视图由5个面,左视图有3个面,俯视图有4个面,故可知主视图的面积最大.故选C考点:三视

12、图8、B【解析】根据题意,两车距离为函数,由图象可知两车起始距离为80,从而得到乙车速度,根据图象变化规律和两车运动状态,得到相关未知量【详解】由图象可知,乙出发时,甲乙相距80km,2小时后,乙车追上甲则说明乙每小时比甲快40km,则乙的速度为120km/h正确;由图象第26小时,乙由相遇点到达B,用时4小时,每小时比甲快40km,则此时甲乙距离440=160km,则m=160,正确;当乙在B休息1h时,甲前进80km,则H点坐标为(7,80),正确;乙返回时,甲乙相距80km,到两车相遇用时80(120+80)=0.4小时,则n=6+1+0.4=7.4,错误故选B【点睛】本题以函数图象为背

13、景,考查双动点条件下,两点距离与运动时间的函数关系,解答时既要注意图象变化趋势,又要关注动点的运动状态9、B【解析】找出原式的一个有理化因式即可【详解】的一个有理化因式是,故选B【点睛】此题考查了分母有理化,熟练掌握有理化因式的取法是解本题的关键10、C【解析】根据有理数的减法,减去一个数等于加上这个数的相反数,可得答案【详解】解:,故选:C【点睛】本题考查了有理数的减法,减去一个数等于加上这个数的相反数二、填空题(共7小题,每小题3分,满分21分)11、1【解析】根据弧长公式l=代入求解即可【详解】解:,故答案为1【点睛】本题考查了弧长的计算,解答本题的关键是掌握弧长公式:l=12、28【解

14、析】设这种电子产品的标价为x元,由题意得:0.9x21=2120%,解得:x=28,所以这种电子产品的标价为28元故答案为28.13、2【解析】ACB=90,FDAB,ACB=FDB=90。F=30,A=F=30(同角的余角相等)。又AB的垂直平分线DE交AC于E,EBA=A=30。RtDBE中,BE=2DE=2。14、 【解析】用黑球的个数除以总球的个数即可得出黑球的概率【详解】解:袋子中共有5个球,有2个黑球,从袋子中随机摸出一个球,它是黑球的概率为;故答案为【点睛】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=15

15、、8.【解析】试题分析: 因为AB为切线,P为切点,劣弧AB所对圆心角考点: 勾股定理;垂径定理;弧长公式.16、2或2【解析】本题有两种情况,一种是点在线段的延长线上,一种是点在线段上,解题过程一样,利用正方形和三角形的有关性质,求出、的值,再由勾股定理求出的值,根据证明,可得,即可得到的长.【详解】解: 当点在线段的延长线上时,如图3所示.过点作于,是正方形的对角线,,在中,由勾股定理,得:,在和中,,,当点在线段上时,如图4所示.过作于是正方形的对角线,在中,由勾股定理,得:在和中,,,故答案为或【点睛】本题主要考查了勾股定理和三角形全等的证明.17、143549【解析】根据题中密码规律

16、确定所求即可.【详解】532=5310000+52100+5(2+3)=151025924=9210000+94100+9(2+4)=183654,863=8610000+83100+8(3+6)=482472,725=7210000+75100+7(2+5)=143549.故答案为:143549【点睛】本题考查有理数的混合运算,根据题意得出规律并熟练掌握运算法则是解题关键.三、解答题(共7小题,满分69分)18、 (1)y=x2+x+2;(2)满足条件的点P的坐标为(,)或(,)或(,5)或(,5)【解析】(1)利用待定系数法求抛物线的表达式;(2)使BMP与ABD相似的有三种情况,分别求出

17、这三个点的坐标.【详解】(1)抛物线与x轴交于点A(1,0),B(4,0),设抛物线的解析式为y=a(x+1)(x4),抛物线与y轴交于点C(0,2),a1(4)=2,a=,抛物线的解析式为y=(x+1)(x4)=x2+x+2;(2)如图1,连接CD,抛物线的解析式为y=x2+x+2,抛物线的对称轴为直线x=,M(,0),点D与点C关于点M对称,且C(0,2),D(3,2),MA=MB,MC=MD,四边形ACBD是平行四边形,A(1,0),B(4,0),C(3,22),AB2=25,BD2=(41)2+22=5,AD2=(3+1)2+22=20,AD2+BD2=AB2,ABD是直角三角形,AD

18、B=90,设点P(,m),MP=|m|,M(,0),B(4,0),BM=,BMP与ABD相似,当BMPADB时,m=,P(,)或(,),当BMPBDA时,m=5,P(,5)或(,5),即:满足条件的点P的坐标为P(,)或(,)或(,5)或(,5)【点睛】本题考查了二次函数的应用,解题的关键是熟练的掌握二次函数的应用.19、,1+ 【解析】运用公式化简,再代入求值.【详解】原式= ,当x=+1时,原式=【点睛】考查分式的化简求值、整式的化简求值,解答本题的关键是明确它们各自的计算方法20、(1)50;(2)108;(3)【解析】分析:(1)根据B组的人数和所占的百分比,即可求出这次被调查的总人数

19、,从而补全统计图;用360乘以A组所占的百分比,求出A组的扇形圆心角的度数,再用总人数减去A、B、D组的人数,求出C组的人数;(2)画出树状图,由概率公式即可得出答案本题解析:解:(1)调查的总人数是:1938%50(人)C组的人数有501519412(人),补全条形图如图所示(2)画树状图如下共有12种等可能的结果,恰好选中甲的结果有6种,P(恰好选中甲)点睛:本题考查了列表法与树状图、条形统计图的综合运用熟练掌握画树状图法,读懂统计图,从统计图中得到必要的信息是解决问题的关键21、(1);(2). 【解析】(1)直接根据概率公式求解即可;(2)根据题意先画出树状图,得出所有情况数和甲、乙两

20、位嘉宾能分为同队的结果数,再根据概率公式即可得出答案【详解】解:(1)共有三根细绳,且抽出每根细绳的可能性相同,甲嘉宾从中任意选择一根细绳拉出,恰好抽出细绳AA1的概率是=;(2)画树状图:共有9种等可能的结果数,其中甲、乙两位嘉宾能分为同队的结果数为3种情况,则甲、乙两位嘉宾能分为同队的概率是22、(1)详见解析;(2)详见解析;(3)详见解析.【解析】(1)求出PBO+PDO=180,根据角平分线定义得出CBO=PBO,ODF=PDO,求出CBO+ODF=90,求出CBO=DFO,根据平行线的性质得出即可;(2)求出ABO=PDA,根据角平分线定义得出CBO=ABO,CDQ=PDO,求出C

21、BO=CDQ,推出CDQ+DCQ=90,求出CQD=90,根据垂直定义得出即可;(3)分为两种情况:根据三角形面积公式求出即可【详解】(1)证明:如图1在平面直角坐标系xOy中,点A在x轴的正半轴上,点B的坐标为(0,4),AOB=90DPAB于点P,DPB=90,在四边形DPBO中,DPB+PBO+BOD+PDO=360,PBO+PDO=180,BC平分ABO,DF平分PDO,CBO=PBO,ODF=PDO,CBO+ODF=(PBO+PDO)=90,在FDO中,OFD+ODF=90,CBO=DFO,DFCB(2)直线DF与CB的位置关系是:DFCB,证明:延长DF交CB于点Q,如图2,在ABO中,AOB=90,BAO+ABO=90,在APD中,APD=90,PAD+PDA=90,ABO=PDA,BC平分ABO,DF平分PDO,CBO=ABO,CDQ=PDO,CBO=CDQ,在CBO中,CBO+BCO=90,CDQ+DCQ=90,在QCD中,CQD=90,DFCB(3)解:过M作MNy轴于N,M(4,-1),MN=4,ON=1,当E在y轴的正半轴上时,如图3,MCE的面积等于BCO

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论