




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、Modelling of an Inductively Coupled Plasma Torch: first stepAndr P.1, Clain S. 4, Dudeck M. 3, Izrar B.2, Rochette D1, Touzani R3, Vacher D.11. LAEPT, Clermont University, France2. ICARE, Orlans University, France3. Institut Jean Le Rond dAlembert, University of Paris 6 , France4. LM, Clermont Unive
2、rsity, , FranceModelling of an Inductively CoComposition in molar fractionMars97% CO2; 3% N2Titan97%N2; 2% CH4; 1% Ar Composition in molar fractionICP Torch:atmospheric pressureLow flow of gazAssumptionsThermal equlibrium Chemical equilibriumOptical Thin plasmaSimple Case!ICP Torch:Simple Case!Compo
3、sitionSpectral lines, Spectroscopy measurementsTransport CoefficientsModellingThermodynamicPropertiesRadiative loss termInteraction PotentialsCompositionSpectral lines, TraCompositionSpectral lines, Spectroscopy measurementsTransport CoefficientsModellingThermodynamicPropertiesRadiative loss termInt
4、eraction PotentialsCompositionSpectral lines, TraChemical and Thermal equilibrium: Gibbs Free Energy minimisationDalton LawElectrical NeutralityChemical species: MarsMonatomic species (11): C, C-, C+, C+, N, N+, N+, O, O-, O+, O+Diatomic species (18): C2, C2-, C2+, CN, CN-, CN+, CO, CO-, CO+, N2, N2
5、-, N2+, NO, NO-, NO+, O2, O2-, O2+Poly_atomic species (23):C2N, C2N2, C2O, C3, C3O2, C4, C4N2, C5, CNN, CNO, CO2, CO2-, N2O, N2O3, N2O4, N2O5, N2O+, N3, NCN, NO2, NO2-, NO3, O3 e-, solid phase: graphiteTitan:Monatomic species (13): Ar, Ar+, Ar+, C, C-, C+, C+, H, H+, H-, N, N+, N+, Diatomic Species
6、(18) : C2, C2-, C2+, CN, CN-, CN+, CO, CO-, CO+, N2, N2-, N2+, NO, NO-, NO+, O2, O2-, O2+ Poly_atomic species (26 ): C2H, C2H2, C2H4, C2N, C2N2, C3, C4, C4N2, C5, CH2, CH3, CH4, CHN, CNN, H2N, H2N2, H3N, H4N2, N3, NCN, H3+, NH4+, C2H3, C2H5, C2H6, HCCNe-, solid phase: graphiteChemical and Thermal eq
7、uilibriTo calculate in gas phase, we consider the temperature range 3000; 15000MarsTitanTo calculate in gas phase, we MarsTitanMarsTitanCompositionSpectral lines, Spectroscopy measurementsTransport CoefficientsModellingThermodynamicPropertiesRadiative loss termInteraction PotentialsCompositionSpectr
8、al lines, Tra*Intensities calculation (Boltzmann distribution)MarsLine CI 2582.9 10-10 mMarsLine CI 2582.9 10-10 mCompositionSpectral lines, Spectroscopy measurementsTransport CoefficientsModellingThermodynamicPropertiesRadiative loss termInteraction PotentialsCompositionSpectral lines, TraThermodyn
9、amic properties Massic density: Internal energy: eThermodynamic properties MaCompositionSpectral lines, Spectroscopy measurementsTransport CoefficientsModellingThermodynamicPropertiesRadiative loss termInteraction PotentialsCompositionSpectral lines, TraPotential interactionsCharged-Charged: Shielde
10、d with Debye length Coulombian potential Neutral-Neutral:Lennard Jones Potential (evalaute and combining rules)Charged-Neutral:Dipole and charge transferElectrons-neutral: Bibliography and estimationsPotential interactionsTransport coefficients : Chapman-Enskog methodElectrical conductivity : third
11、orderViscosity coefficient : fourth orderTotal thermal conductivity k :summation of four termstranslational thermal conductivity due to the electrons,translational thermal conductivity due to the heavy species particles,internal thermal conductivity,chemical reaction thermal conductivity. Transport
12、coefficients : ChapmModelling-of-an-Inductively-Coupled-Plasma-Torch-first-step-电感耦合等离子体炬的第一步建模课件Axisymmetry LTE model for inductive plasma torches LTE flow field equations U: conservative variable vector Fr(U), Fz(U): convective fluxes Gr(U), Gz(U): diffusive fluxes S(U): source termEquation of sta
13、te of the plasma considered:with : internal energy defined by:Viscous termsConductive heat fluxesLorentz forceJoule heatingRadiative loss term PRadPhysical model: assumptions- Classical torch geometry axisymmetric geometry- Local Thermodynamic Equilibrium (LTE) conditions for the plasma- Unsteady st
14、ate, laminar, swirling plasma flow (tangential component)- Optically thin plasma- Negligible viscous work and displacement currentAxisymmetry LTE model for induMHD induction equations B: magnetic induction H: magnetic field E: electric field J and J0: current density and source current density : mag
15、netic permeability : electric conductivityEquations formulated in terms of electric field ENumerical methodHydrodynamics (three steps)To obtain an approximation of the solution U on each cell, we use a fractional step technique coupling the finite volume method and the finite element method: First s
16、tep: To compute the convective fluxes , we use a finite volume scheme with multislope MUSCL reconstruction where the fluxes are calculated using a HLLC scheme. Second step: We use a Runge Kutta method to integrate the source terms. Third step: We use a finite element method to evaluate the diffusive
17、 contribution.ElectromagneticTo solve the partial differential equation, we use a standard finite element method with a standard triangulation of the domain and the use of a piecewise linear approximation.Using the cylindrical coordinates (r,z) and assuming -invariance we obtain:MHD induction equations B: magBasic datacompositionIntensity calculationThermodynamic propertiesFirst estimation o
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 全无机零维无铅钙钛矿单晶的结晶生长调控及X射线探测器研究
- 退火处理对Pt基块体金属玻璃纳米力学行为的影响研究
- 深度学习指向下高中英语阅读课教学评一体化实践研究
- 乌镇旅游电子商务
- 针刺治疗失眠
- 腰椎间盘突出症日常护理
- 闽台师资培训总结
- 股骨颈骨折临床表现及护理
- 过程检验员培训
- 电视片新媒体发行协议
- 小学班队工作原理与实践 全套课件
- 形式语言与自动机理论-蒋宗礼-第一章参考答案
- 注塑生产过程控制流程
- 教科版六年级科学下册 (厨房里的物质与变化)教学课件
- 高铁动车受众人群分析课件
- 肠造口术-课件
- 建设工程概算预算结算管理规定
- 消费者心理与行为分析PPT(第四版)完整全套教学课件
- 2021年安徽省公务员考试《申论》真题A卷
- 跨国公司的人力资源管理
- 2023苏教版数学四年级下册第一单元试卷含部分答案(三套)
评论
0/150
提交评论