




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2023学年九上数学期末模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(每题4分,共48分)1为了解某地区九年级男生的身高情况,随取了该区100名九年级男生
2、,他们的身高x(cm)统计如根据以上结果,抽查该地区一名九年级男生,估计他的身高不高于180cm的概率是()组别(cm)x160160 x170170 x180 x180人数1542385A0.05B0.38C0.57D0.952平移抛物线y(x1)(x+3),下列哪种平移方法不能使平移后的抛物线经过原点()A向左平移1个单位B向上平移3个单位C向右平移3个单位D向下平移3个单位3已知反比例函数,下列结论;图象必经过点;图象分布在第二,四象限;在每一个象限内,y随x的增大而增大.其中正确的结论有( )个.A3B2C1D04二次函数的图象如图所示,对称轴为直线,下列结论不正确的是( )AB当时,
3、顶点的坐标为C当时,D当时,y随x的增大而增大5若正六边形的边长为6,则其外接圆半径为( )A3B3C3D66已知则( )ABCD7反比例函数y=的图象经过点(2,5),若点(1,n)在此反比例函数的图象上,则n等于( )A10B5C2D8某闭合电路中,电源的电压为定值,电流I(A)与电阻R()成反比例图表示的是该电路中电流I与电阻R之间函数关系的图象,则用电阻R表示电流I的函数解析式为( )ABCD9若x2是关于x的一元二次方程x2ax0的一个根,则a的值为()A1B1C2D210下面四个图形分别是绿色食品、节水、节能和回收标志,在这四个标志中,是中心对称图形的是( )ABCD11坡比常用来
4、反映斜坡的倾斜程度如图所示,斜坡AB坡比为( ).A:4B:1C1:3D3:112在RtABC中,C90,cosA,AC,则BC等于( )A B1C2D3二、填空题(每题4分,共24分)13如图所示,等边ABC中D点为AB边上一动点,E为直线AC上一点,将ADE沿着DE折叠,点A落在直线BC上,对应点为F,若AB4,BF:FC1:3,则线段AE的长度为_14如图,在平行四边形中,是线段上的点,如果,连接与对角线交于点,则_15观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2019个图形中共有_个16在RtABC中,AC:BC1:2,则sinB_.17如果3a4b(a、b都
5、不等于零),那么a+bb_18如图,在44的正方形网格中,若将ABC绕着点A逆时针旋转得到ABC,则的长为_三、解答题(共78分)19(8分)数学不仅是一门学科,也是一种文化,即数学文化.数学文化包括数学史、数学美和数学应用等多方面.古时候,在某个王国里有一位聪明的大臣,他发明了国际象棋,献给了国王,国王从此迷上了下棋,为了对聪明的大臣表示感谢,国王答应满足这位大臣的一个要求.大臣说:“就在这个棋盘上放一些米粒吧.第格放粒米,第格放粒米,第格放粒米,然后是粒、粒、粒一只到第格.”“你真傻!就要这么一点米粒?”国王哈哈大笑.大臣说:“就怕您的国库里没有这么多米!”国王的国库里真没有这么多米吗?题
6、中问题就是求是多少?请同学们阅读以下解答过程就知道答案了.设,则 即:事实上,按照这位大臣的要求,放满一个棋盘上的个格子需要粒米.那么到底多大呢?借助计算机中的计算器进行计算,可知答案是一个位数: ,这是一个非常大的数,所以国王是不能满足大臣的要求.请用你学到的方法解决以下问题:我国古代数学名著算法统宗中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座层塔共挂了盏灯,且相邻两层中的下一层灯数是上一层灯数的倍,则塔的顶层共有多少盏灯?计算: 某中学“数学社团”开发了一款应用软件,推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答
7、案:已知一列数:,其中第一项是,接下来的两项是,再接下来的三项是,以此类推,求满足如下条件的所有正整数,且这一数列前项和为的正整数幂.请直接写出所有满足条件的软件激活码正整数的值.20(8分)如图,在中, ,于点, 是上的点, 于点, ,交于点.(1)求证: ;(2)当的面积最大时,求的长.21(8分)若抛物线(a、b、c是常数,)与直线都经过轴上的一点P,且抛物线L的顶点Q在直线上,则称此直线与该抛物线L具有“一带一路”关系,此时,直线叫做抛物线L的“带线”,抛物线L叫做直线的“路线”(1)若直线与抛物线具有“一带一路”关系,求m、n的值(2)若某“路线”L的顶点在反比例函数的图象上,它的“
8、带线” 的解析式为,求此路的解析式22(10分)(1)如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DFBE,求证:CECF;(2)如图2,在正方形ABCD中,E是AB上一点,G是AD上一点,如果GCE45,请你利用(1)的结论证明:GEBEGD;(3)运用(1)(2)解答中所积累的经验和知识,完成下题:如图3,在直角梯形ABCD中,ADBC(BCAD),B90,ABBC,E是AB上一点,且DCE45,BE4,DE=10, 求直角梯形ABCD的面积23(10分)如图,AC是O的一条直径,AP是O的切线作BM=AB并与AP交于点M,延长MB交AC于点E,交O于点D,连接AD
9、(1)求证:AB=BE;(2)若O的半径R=5,AB=6,求AD的长.24(10分)已知,有一直径是1m的圆形铁皮,要从中剪出一个最大的圆心角时90的扇形ABC(如图),用剪下的扇形铁皮围成一个圆锥,该圆锥的底面圆的半径是多少?25(12分)已知二次函数yx22xm(m为常数)的图像与x轴相交于A、B两点(1)求m的取值范围;(2)若点A、B位于原点的两侧,求m的取值范围26如图,在矩形纸片中,已知,点在边上移动,连接,将多边形沿折叠,得到多边形,点、的对应点分别为点,.(1)连接.则_,_;(2)当恰好经过点时,求线段的长;(3)在点从点移动到点的过程中,求点移动的路径长.参考答案一、选择题
10、(每题4分,共48分)1、D【分析】先计算出样本中身高不高于180cm的频率,然后根据利用频率估计概率求解【详解】解:样本中身高不高于180cm的频率0.1,所以估计他的身高不高于180cm的概率是0.1故选:D【点睛】本题考查了概率,灵活的利用频率估计概率是解题的关键.2、B【分析】先将抛物线解析式转化为顶点式,然后根据顶点坐标的平移规律即可解答.【详解】解:y(x1)(x+3)=-(x+1)2+4A、向左平移1个单位后的解析式为:y-(x+2)2+4,当x=0时,y=0,即该抛物线经过原点,故本选项不符合题意;B、向上平移3个单位后的解析式为:y=-(x+1)2+7,当x=0时,y=3,即
11、该抛物线不经过原点,故本选项符合题意;C、向右平移3个单位后的解析式为:y=-(x-2)2+4,当x=0时,y=0,即该抛物线经过原点,故本选项不符合题意.;D、向下平移3个单位后的解析式为:y=-(x+1)2+1,当x=0时,y=0,即该抛物线经过原点,故本选项不符合题意.【点睛】本题考查了二次函数图像的平移,函数图像平移规律:上移加,下移减,左移加,右移减.3、A【分析】根据反比例函数的图像与性质解答即可.【详解】-11=-1,图象必经过点,故正确;-10,图象分布在第二,四象限,故正确;-110,1+2+4+(2n)=0,解得:n=5,总共有 满足,1+2+4+8+(2n)=0,解得:n
12、=13,总共有 满足,1+2+4+8+16+(2n)=0,解得:n=29,总共有 不满足,【点睛】考查归纳推理,读懂题目中等比数列的求和方法是解题的关键.20、(1)见解析;(2)5【分析】(1)根据相似三角形的判定方法即可求;(2)设,的面积为,由等腰三角形性质和平行线分线段成比例,可求出,再根据的面积可以得出关于的函数关系式,由二次函数性质可得的面积为最大时的值即可【详解】解:(1)证明: , (2)解:设,则,在RtABG中,即,即,的面积 当的面积最大时,即的长为【点睛】本题考查相似三角形的判定和性质,三角形的面积公式,可利用数形结合思想根据题目提供的条件转化为函数关系式21、(1)-
13、1;(2)路线L的解析式为或【解析】试题分析: (1)令直线ymx1中x0,则y1,所以该直线与y轴的交点为(0,1),将(0,1)代入抛物线yx22xn中,得n1,可求出抛物线的解析式为yx22x1(x1)2,所以抛物线的顶点坐标为(1,0)将点(1,0)代入到直线ymx1中,得0m1,解得m1,(2)将y2x4和y联立方程可得2x4,即2x24x60,解得x11,x23,所以该“路线”L的顶点坐标为(1,6)或(3,2),令“带线”l:y2x4中x0,则y4,所以 “路线”L的图象过点(0,4),设该“路线”L的解析式为ym(x1)26或yn(x3)22,由题意得:4m(01)26或4n(
14、03)22,解得m2,n,所以此“路线”L的解析式为y2(x1)26或y (x3)22.试题解析:(1)令直线ymx1中x0,则y1,即该直线与y轴的交点为(0,1),将(0,1)代入抛物线yx22xn中,得n1,抛物线的解析式为yx22x1(x1)2,抛物线的顶点坐标为(1,0)将点(1,0)代入到直线ymx1中,得0m1,解得m1,(2)将y2x4代入到y中,得2x4,即2x24x60,解得x11,x23,该“路线”L的顶点坐标为(1,6)或(3,2),令“带线”l:y2x4中x0,则y4,“路线”L的图象过点(0,4),设该“路线”L的解析式为ym(x1)26或yn(x3)22,由题意得
15、:4m(01)26或4n(03)22,解得m2,n,此“路线”L的解析式为y2(x1)26或y (x3)22.22、(1)证明见解析;(2)证明见解析;(3)1.【分析】(1)根据正方形的性质,可直接证明CBECDF,从而得出CE=CF;(2)延长AD至F,使DF=BE,连接CF,根据(1)知BCE=DCF,即可证明ECF=BCD=90,根据GCE=45,得GCF=GCE=45,利用全等三角形的判定方法得出ECGFCG,即GE=GF,即可得出答案GE=DF+GD=BE+GD;(3)过C作CFAD的延长线于点F则四边形ABCF是正方形,设DF=x,则AD=12-x,根据(2)可得:DE=BE+D
16、F=4+x,在直角ADE中利用勾股定理即可求解.【详解】(1)如图1,在正方形ABCD中,BC=CD,B=CDF,BE=DF,CBECDF,CE=CF;(2)如图,延长AD至F,使DF=BE,连接CF,由(1)知CBECDF,BCE=DCF,BCE+ECD=DCF+ECD,即ECF=BCD=90,又GCE=45,GCF=GCE=45,CE=CF,GCE=GCF,GC=GC,ECGFCG,GE=GF,GE=DF+GD=BE+GD;(3)如图:过点C作CFAD于F,ADBC,B90,A90,AB90,FCAD,四边形ABCF是矩形,且ABBC12,四边形ABCF是正方形,AF12,由(2)可得DE
17、DFBE,DE4DF,在ADE中,AE2DA2DE2,(124)2(12DF)2(4DF)2,DF6,AD6,S四边形ABCD (ADBC)AB(612)121【点睛】本题考查了全等三角形的判定和性质以及正方形的性质,解决本题的关键是注意每个题目之间的关系,正确作出辅助线23、 (1)见解析;(2) AD【分析】(1)由切线的性质可得BAEMAB90,进而得AEBAMB90,由等腰三角形的性质得MABAMB,继而得到BAEAEB,根据等角对等边即可得结论;(2)连接BC,根据直径所对的圆周角是直角可得ABC90,利用勾股定理可求得BC=8,证明ABCEAM,可得CAME,可求得AM,再由圆周角
18、定理以及等量代换可得DAMD,继而根据等角对等边即可求得ADAM.【详解】(1)AP是O的切线,EAM90,BAEMAB90,AEBAMB90,又ABBM,MABAMB,BAEAEB,ABBE;(2)连接BC,AC是O的直径,ABC90在RtABC中,AC10,AB6,BC=8,由(1)知,BAEAEB,又ABC=EAM=90,ABCEAM,CAME,即,AM,又DC,DAMD,ADAM.【点睛】本题考查了切线的性质,等腰三角形的判定与性质,相似三角形的判定与性质,圆周角定理等知识,准确识图,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.24、【解析】求出弧BC的长度,即圆锥底面圆的周长,继而可求出底面圆的半径.【详解】解:连接BC,AO,BAC=90,OB=OC,BC是圆0的直径,AOBC,圆的直径为1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 机关食堂人员聘用方案(3篇)
- 消防专业分包方案(3篇)
- DB62T 4392-2021 集中式饮用水水源地命名和信息编码规范
- 煤矿采空区灭火方案(3篇)
- 药酒包装销售方案(3篇)
- 微商合作合同协议书
- 房屋代销合同补充协议书
- 基础护理发热课件
- 智能停车系统车位产权及运营管理合同范本
- 云南省红河哈尼族彝族自治州建水县2025届七下英语期中复习检测试题含答案
- 自然辩证法考试复习资料-华北水利水电大学研究生专用
- 《劳动关系协调员》三级操作技能练习题
- 2023年度中学生趣味百科知识竞赛题库及答案(150题)
- 城市开发运营方案
- 空调维保投标方案(技术标)
- IATF16949标准培训教材
- 国家开放大学《可编程控制器应用实训》形考任务4(实训四)参考答案
- 国家开放大学《会计实务专题》形考任务1-4参考答案
- 简易机器人课程设计报告
- MATLAB仿真课程设计-对磁盘驱动读取系统校正部分的设计
- 动作经济原则手边化POU改善
评论
0/150
提交评论