版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2023学年九上数学期末模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1如图,一只箱子沿着斜面向上运动,箱高AB1.3cm,当BC2.6m时,点B离地面的距离BE1m,则此时点A离地面的距离是( )A2.2mB2mC1.8mD1.6m2若一元二次方程x22x
2、+m=0有两个不相同的实数根,则实数m的取值范围是()Am1Bm1Cm1Dm13若一次函数的图象不经过第二象限,则关于的方程的根的情况是( )A有两个不相等的实数根B有两个相等的实数根C无实数根D无法确定4如图,将ABC绕点C顺时针方向旋转40得ACB,若ACAB,则BAC等于( )A50B60C70D805下列图形中,是轴对称图形,但不是中心对称图形的是( )ABCD6下列命题中,属于真命题的是( )A对角线互相垂直的四边形是平行四边形B对角线互相垂直平行的四边形是菱形C对角线互相垂直且相等的四边形是矩形D对角线互相平分且相等的四边形是正方形7如图,AB为O的直径,PD切O于点C,交AB的延
3、长线于D,且CO=CD,则PCA=( )A30B45C60D67.58已知线段a是线段b,c的比例中项,则下列式子一定成立的是( )ABCD9参加一次聚会的每两人都握了一次手,所有人共握手10次,若共有x人参加聚会,则根据题意,可列方程( )ABCD10已知如图,中,边的垂直平分线交于点,交于点,则的长是( )ABC4D611平移抛物线y(x1)(x+3),下列哪种平移方法不能使平移后的抛物线经过原点()A向左平移1个单位B向上平移3个单位C向右平移3个单位D向下平移3个单位12下列事件中是随机事件的是()A校运会上立定跳远成绩为10米B在只装有5个红球的袋中,摸出一个红球C慈溪市明年五一节是
4、晴天D在标准大气压下,气温3C 时,冰熔化为水二、填空题(每题4分,共24分)13已知是一张等腰直角三角形板,要在这张纸板中剪取正方形(剪法如图1所示),图1中剪法称为第次剪取,记所得的正方形面积为;按照图1中的剪法,在余下的和中,分别剪取两个全等正方形,称为第次剪取,并记这两个正方形面积和为,(如图2) ;再在余下的四个三角形中,用同样的方法分别剪取正方形,得到四个相同的正方形,称为第次剪取,并记这四个正方形的面积和为,(如图3);继续操作下去则第次剪取后, _14已知点P(a,b)在反比例函数y=的图象上,则ab=_15二次函数图像的顶点坐标为_16如图,BD为正方形ABCD的对角线,BE
5、平分DBC,交DC与点E,将BCE绕点C顺时针旋转90得到DCF,若CE1 cm,则BF_cm.17由一些大小相同的小正方体搭成的几何体的主视图和俯视图,如图所示,则搭成该几何体的小正方体最多是_个18如图,已知平行四边形ABCD中,E是BC的三等分点,连结AE与对角线BD交于点F,则_.三、解答题(共78分)19(8分)如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于F.(1)证明:APDCPD; (2)求CPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当ABC=120时,连接CE,试探究线段AP与线段CE的数量
6、关系,并说明理由.20(8分)定义:在平面直角坐标系中,抛物线()与直线交于点、(点在点右边),将抛物线沿直线翻折,翻折前后两抛物线的顶点分别为点、,我们将两抛物线之间形成的封闭图形称为惊喜线,四边形称为惊喜四边形,对角线与之比称为惊喜度(Degree of surprise),记作.(1)如图(1)抛物线沿直线翻折后得到惊喜线.则点坐标 ,点坐标 ,惊喜四边形属于所学过的哪种特殊平行四边形? ,为 .(2)如果抛物线()沿直线翻折后所得惊喜线的惊喜度为1,求的值.(3)如果抛物线沿直线翻折后所得的惊喜线在时,其最高点的纵坐标为16,求的值并直接写出惊喜度.21(8分)(x2+y22(10分)
7、甲、乙、丙三人进行乒乓球比赛他们通过摸球的方式决定首场比赛的两个选手:在一个不透明的口袋中放入两个红球和一个白球,这些球除颜色外其他都相同,将它们搅匀,三人从中各摸出一个球,摸到红球的两人即为首场比赛选手求甲、丙两人成为比赛选手的概率(请用画树状图或列表等方法写出分析过程并给出结果)23(10分)已知,在中,点为的中点(1)若点、分别是、的中点,则线段与的数量关系是 ;线段与的位置关系是 ;(2)如图,若点、分别是、上的点,且,上述结论是否依然成立,若成立,请证明;若不成立,请说明理由;(3)如图,若点、分别为、延长线上的点,且,直接写出的面积 24(10分)如图,直线AB和抛物线的交点是A(
8、0,3),B(5,9),已知抛物线的顶点D的横坐标是1(1)求抛物线的解析式及顶点坐标;(1)在x轴上是否存在一点C,与A,B组成等腰三角形?若存在,求出点C的坐标,若不在,请说明理由;(3)在直线AB的下方抛物线上找一点P,连接PA,PB使得PAB的面积最大,并求出这个最大值25(12分)如图,已知直线l切O于点A,B为O上一点,过点B作BCl,垂足为点C,连接AB、OB(1)求证:ABCABO;(2)若AB,AC1,求O的半径26在一个不透明的盒子中装有大小和形状相同的3个红球和2个白球,把它们充分搅匀(1)“从中任意抽取1个球不是红球就是白球”是 事件,“从中任意抽取1个球是黑球”是 事
9、件;(2)从中任意抽取1个球恰好是红球的概率是 ;(3)学校决定在甲、乙两名同学中选取一名作为学生代表发言,制定如下规则:从盒子中任取两个球,若两球同色,则选甲;若两球异色,则选乙你认为这个规则公平吗?请用列表法或画树状图法加以说明参考答案一、选择题(每题4分,共48分)1、A【分析】先根据勾股定理求出CE,再利用相似三角形的判定与性质进而求出DF、AF的长即可得出AD的长【详解】解:由题意可得:ADEB,则CFDAFBCBE,CDFCEB,ABFCEB90,AFBCBE,CBEAFB,BC2.6m,BE1m,EC2.4(m),即,解得:FB,AF,CDFCEB,即解得:DF,故ADAF+DF
10、+2.2(m),答:此时点A离地面的距离为2.2m故选:A【点睛】本题考查了勾股定理、相似三角形的判定和性质,利用勾股定理,正确利用相似三角形的性质得出FD的长是解题的关键2、D【解析】分析:根据方程的系数结合根的判别式0,即可得出关于m的一元一次不等式,解之即可得出实数m的取值范围详解:方程有两个不相同的实数根, 解得:m1故选D点睛:本题考查了根的判别式,牢记“当0时,方程有两个不相等的实数根”是解题的关键3、A【分析】利用一次函数性质得出k0,b0,再判断出=k2-4b0,即可求解.【详解】解:一次函数的图象不经过第二象限,方程有两个不相等的实数根故选【点睛】本题考查的是一元二次方程的根
11、的判别式,熟练掌握一次函数的图像和一元二次方程根的判别式是解题的关键.4、A【解析】考点:旋转的性质分析:已知旋转角度,旋转方向,可求ACA,根据互余关系求A,根据对应角相等求BAC解:依题意旋转角ACA=40,由于ACAB,由互余关系得A=90-40=50,由对应角相等,得BAC=A=50故选A5、A【解析】轴对称图形一个图形沿某一直线对折后图形与自身重合的图形;中心对称图形是指一个图形沿某一点旋转180后图形能与自身重合,只有A图符合题中条件. 故应选A.6、B【分析】直接利用平行四边形、矩形、菱形、正方形的判定方法分别判断得出答案【详解】解:A、对角线互相垂直的四边形是平行四边形,错误,
12、不合题意B、对角线互相垂直的平行四边形是菱形,正确,是真命题;C、对角线互相平分且相等的四边形是矩形,本选项错误,不合题意;D、对角线互相平分且相等的四边形应是矩形,本选项错误,不合题意;故选:B【点睛】此题主要考查了命题与定理,正确掌握特殊四边形的判定方法是解题关键7、D【分析】利用圆的切线的性质定理、等腰三角形的性质即可得出【详解】解:PD切O于点C,OCCD,在RtOCD中,又CD=OC,COD=45OC=OA,OCA45=22.5PCA=90-22.5=67.5故选:D【点睛】本题考查切线的性质定理,熟练掌握圆的切线的性质定理、等腰三角形的性质是解题的关键8、B【解析】根据比例的性质列
13、方程求解即可解题的关键是掌握比例中项的定义,如果a:b=b:c,即b2=ac,那么b叫做a与c的比例中项【详解】A选项,由 得,b2=ac,所以b是a,c的比例中项,不符合题意;B选项,由得a2=bc,所以a是b,c的比例中项,符合题意;C选项,由,得c2=ab,所以c是a,b的比例中项,不符合题意;D选项,由得b2=ac,所以b是a,c的比例中项,不符合题意;故选B.【点睛】本题考核知识点:本题主要考查了比例线段解题关键点:理解比例中项的意义.9、C【分析】如果人参加了这次聚会,则每个人需握手次,人共需握手次;而每两个人都握了一次手,因此一共握手次.【详解】设人参加了这次聚会,则每个人需握手
14、次,依题意,可列方程.故选C.【点睛】本题主要考查一元二次方程的应用.10、B【分析】根据勾股定理求出BC,根据线段垂直平分线性质和勾股定理可求AE.【详解】因为中,所以BC=因为的垂直平分线交于点,所以AE=EC设AE=x,则BE=8-x,EC=x在RtBCE中,由BE2+BC2=EC2可得x2+(8-x)2=62解得x=.即AE=故选:B【点睛】考核知识点:勾股定理,线段垂直平分线.根据勾股定理求出相应线段是关键.11、B【分析】先将抛物线解析式转化为顶点式,然后根据顶点坐标的平移规律即可解答.【详解】解:y(x1)(x+3)=-(x+1)2+4A、向左平移1个单位后的解析式为:y-(x+
15、2)2+4,当x=0时,y=0,即该抛物线经过原点,故本选项不符合题意;B、向上平移3个单位后的解析式为:y=-(x+1)2+7,当x=0时,y=3,即该抛物线不经过原点,故本选项符合题意;C、向右平移3个单位后的解析式为:y=-(x-2)2+4,当x=0时,y=0,即该抛物线经过原点,故本选项不符合题意.;D、向下平移3个单位后的解析式为:y=-(x+1)2+1,当x=0时,y=0,即该抛物线经过原点,故本选项不符合题意.【点睛】本题考查了二次函数图像的平移,函数图像平移规律:上移加,下移减,左移加,右移减.12、C【分析】根据随机事件的定义,就是可能发生也可能不发生的事件进行判断即可【详解
16、】解:A“校运会上立定跳远成绩为10米”是不可能事件,因此选项A不符合题意;B“在只装有5个红球的袋中,摸出一个红球”是必然事件,因此选项B不符合题意;C“慈溪市明年五一节是晴天”可能发生,也可能不发生,是随机事件,因此选项C符合题意;D“在标准大气压下,气温3C 时,冰熔化为水”是必然事件,因此选项D不符合题意;故选:C【点睛】本题考查了随机事件、必然事件、不可能事件的定义,理解随机事件的定义是解题的关键二、填空题(每题4分,共24分)13、【分析】根据题意可求得ABC的面积,且可得出每个正方形是剩余三角形面积的一半,即为上一次剪得的正方形面积的一半,可得出与ABC的面积之间的关系,可求得答
17、案【详解】AC=BC=2,A=B=45,四边形CEDF为正方形,DEAC,AE=DE=DF=BF,同理每次剪得的正方形的面积都是所在三角形面积的一半, ,同理可得,依此类推可得,故答案为: 【点睛】本题主要考查了正方形与等腰直角三角形的性质,根据条件找到与之间的关系是解题的关键注意规律的总结与归纳14、2【解析】接把点P(a,b)代入反比例函数y=即可得出结论【详解】点P(a,b)在反比例函数y=的图象上,b=,ab=2,故答案为:2.【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键15、(,)【分析】用配方法将抛物线的一般
18、式转化为顶点式,确定顶点坐标即可【详解】抛物线顶点坐标为故本题答案为:【点睛】本题考查了抛物线解析式与顶点坐标的关系,求顶点坐标可用配方法,也可以用顶点坐标公式16、2+【详解】过点E作EMBD于点M,如图所示:四边形ABCD为正方形,BAC=45,BCD=90,DEM为等腰直角三角形BE平分DBC,EMBD,EM=EC=1cm,DE=EM=cm.由旋转的性质可知:CF=CE=1cm,BF=BC+CF=CE+DE+CF=1+1=2+cm.故答案为2+.17、1【分析】根据几何体的三视图可进行求解【详解】解:根据题意得:则搭成该几何体的小正方体最多是1+1+1+2+2=1(个)故答案为1【点睛】
19、本题主要考查几何体的三视图,熟练掌握几何体的三视图是解题的关键18、1:3:9:11或4:6:9:11【分析】分或两种情况解答,根据平行得出,由面积比等于相似比是平方,得出BEF与DAF的面积比,再根据面积公式得出BEF与ABF的面积比,根据图形得出四边形CDFE与BEF的面积关系,最后求面积比即可.【详解】解:E为三等分点,则或时,设,则,时,同理可得设,则,【点睛】本题考查相似三角形面积比等于相似比的平方及面积公式,得出图形之间的关系是解答此题的关键.三、解答题(共78分)19、(1)证明见解析;(2)90;(3)AP=CE.【分析】(1)利用正方形得到AD=CD,ADP=CDP=45,即
20、可证明全等;(2)设,利用三角形内角和性质及外角性质得到,再利用周角计算得出x值;(3)AP=CE. 设,利用三角形内角和性质及外角性质得到,求出,得到是等边三角形,即可证得AP=CE.【详解】解:(1)四边形ABCD是正方形,AD=CD,ADP=CDP=45,在与中,;(2)设,由(1)得,因为PA=PE,所以所以;(3)AP=CE.设,由(1)得,PA=PE且在菱形ABCD中,由(1)得PA=PC,PC=PE,是等边三角形,PE=PC=CE,AP=CE.【点睛】此题考查全等三角形的判定,正方形的性质,菱形的性质,三角形的内角和及外角性质,(2)与(3)图形有变化,解题思路不变,做题中注意总
21、结解题的方法.20、(1);菱形;2;(2);(3),或,.【分析】(1)当y=0时可求出点A坐标为,B坐标为,AB=4,根据四边形四边相等可知该四边形为菱形,由可知抛物线顶点坐标为(1,-4),所以B,AB=8,即可得到为2;(2)惊喜度为1即,利用抛物线解析式分别求出各点坐标,从而得到AC和BD的长,计算即可求出m;(3)先求出顶点坐标,对称轴为直线,讨论对称轴直线是否在这个范围内,分3中情况分别求出最大值为16是m的值.【详解】解:(1)在抛物线上,当y=0时,解得,点在点右边,A点的坐标为,B点的坐标为;AB=4,顶点B的坐标为,由于BD关于x轴对称,D的坐标为,BD=8,通过抛物线的
22、对称性得到AB=BC,又由于翻折,得到AB=BC=AD=CD,惊喜四边形为菱形;(2)由题意得:的顶点坐标,解得:,(3)抛物线的顶点为,对称轴为直线:即时,得即时,时,对应惊喜线上最高点的函数值,(舍去);即时形成不了惊喜线,故不存在综上所述,或,【点睛】本题主要考查了二次函数的综合问题,需要熟练掌握二次函数的基础内容:顶点坐标、对称轴以及各交点的坐标求法.21、4【解析】先设t=x2+y2,则方程即可变形为t(t-1)-12=0,解方程即可求得t即x2+y2的值【详解】设t=x2+y2,所以原式可变形为为t(t-1)-12=0,t2-t-12=0,(t-4)(t+3)=0,所以t=-3或t
23、=4;因为x2+y20,所以x2+y2=4.【点睛】此题考查换元法解一元二次方程,解题关键在于设t=x2+y2.22、.【解析】先画树状图得到所有等可能的情况,然后找出符合条件的情况数,利用概率公式求解即可.【详解】画树状图为: 由树状图知,共有6种等可能的结果数,其中甲、丙两人成为比赛选手的结果有2种,所以甲、丙两人成为比赛选手的概率为【点睛】本题考查了列表法或树状图法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件用到的知识点为:概率=所求情况数与总情况数之比23、(1),;(2)成立,证明见解析;(3)1【分析】(1)点、分
24、别是、的中点,及,可得:,根据SAS判定,即可得出,可得,即可证;(2)根据SAS判定,即可得出,可得,即可证;(3)根据SAS判定,即可得出,将转化为:进行求解即可【详解】解:(1)证明:连接,点、分别是、的中点,为中点,且平分, 在和中,即,即故答案为:,;(2)结论成立:,;证明:连接,为中点,且平分,在和中,即,即(3)证明:连接,为中点,且平分, 在和中,即为中点,故答案为:1【点睛】本题考查全等三角形的判定和性质、等腰直角三角形的性质等知识,解题的关键是学会添加常用辅助线、构造全等三角形解决问题,属于中考压轴题24、(1),顶点D(1,);(1)C(,0)或(,0)或(,0);(2
25、)【解析】(1)抛物线的顶点D的横坐标是1,则x1,抛物线过A(0,2),则:函数的表达式为:y=ax1+bx2,把B点坐标代入函数表达式,即可求解;(1)分AB=AC、AB=BC、AC=BC,三种情况求解即可;(2)由SPABPHxB,即可求解【详解】(1)抛物线的顶点D的横坐标是1,则x1,抛物线过A(0,2),则:函数的表达式为:y=ax1+bx2,把B点坐标代入上式得:9=15a+5b2,联立、解得:a,b,c=2,抛物线的解析式为:yx1x2当x=1时,y,即顶点D的坐标为(1,);(1)A(0,2),B(5,9),则AB=12,设点C坐标(m,0),分三种情况讨论:当AB=AC时,则:(m)1+(2)1=121,解得:m=4,即点C坐标为:(4,0)或(4,0);当AB=BC时,则:(5m)1+91=121,解得:m=5,即:点C坐标为(5,0)或(51,0);当AC=BC时,则:5m)1+91=(m)1+(2)1,解得:m=,则点C坐标为(,0)综上所述:存在,点C的坐标为:(4,0)或(5,0)或(,0);(2)过点P作y轴的平行线交AB于点H设直线AB的表达式为y=kx2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 人教部编版二年级语文上册第14课《我要的是葫芦》精美课件
- 吉首大学《画法几何》2021-2022学年第一学期期末试卷
- 吉首大学《版式设计》2021-2022学年第一学期期末试卷
- 《机床夹具设计》试卷2
- 吉林艺术学院《戏曲栏目策划与制作》2021-2022学年第一学期期末试卷
- 吉林艺术学院《录音艺术基础》2021-2022学年第一学期期末试卷
- 吉林艺术学院《歌曲作法》2021-2022学年第一学期期末试卷
- 2024年公转私佣金协议书模板范本
- 吉林师范大学《用户体验设计》2021-2022学年第一学期期末试卷
- 吉林师范大学《宪法学》2021-2022学年期末试卷
- 世界戏剧三大表演体系
- 《建筑防火通用规范》学习研讨
- 雅各布森翻译理论的解读与启示-对等
- 绩溪县现代化工有限公司年产1000吨34-二氯二苯醚项目(一期工程)竣工环境保护验收报告
- TMF自智网络白皮书4.0
- 所水力除焦设备介绍
- 鼻腔冲洗护理技术考核试题及答案
- 新版UCP600的中英文版下载
- 《企业员工薪酬激励问题研究10000字(论文)》
- 2023年地理知识竞赛试题及答案
- GB 1903.33-2022食品安全国家标准食品营养强化剂5′-单磷酸胞苷(5′-CMP)
评论
0/150
提交评论