2022年陕西省西安市高新逸翠园学校九年级数学第一学期期末统考模拟试题含解析_第1页
2022年陕西省西安市高新逸翠园学校九年级数学第一学期期末统考模拟试题含解析_第2页
2022年陕西省西安市高新逸翠园学校九年级数学第一学期期末统考模拟试题含解析_第3页
2022年陕西省西安市高新逸翠园学校九年级数学第一学期期末统考模拟试题含解析_第4页
2022年陕西省西安市高新逸翠园学校九年级数学第一学期期末统考模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2022-2023学年九上数学期末模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1如果,那么下列比例式中正确的是( )ABCD2如图,ABC内接于O,AB=BC,ABC=120,O的直径AD=6,则BD的长为( )A2B3C2D33下列命题:长度相等的弧是等

2、弧;任意三点确定一个圆;相等的圆心角所对的弦相等;平分弦的直径垂直于弦,并且平分弦所对的两条弧;其中真命题共有( )A0个B1个C2个D3个4已知、是一元二次方程的两个实数根,则的值为( )A-1B0C1D25由于受猪瘟的影响,今年9 月份猪肉的价格两次大幅上涨,瘦肉价格由原来每千克23 元,连续两次上涨后,售价上升到每千克40 元,则下列方程中正确的是( )ABCD6如图,已知是的外接圆,是的直径,是的弦,则等于( )ABCD7一个群里共有个好友,每个好友都分别给群里的其他好友发一条信息,共发信息1980条,则可列方程( )ABCD8若关于的方程有两个相等的实数根,则的值是( )A-1B-3

3、C3D69将抛物线向左平移2个单位后所得到的抛物线为( )ABCD10当压力F(N)一定时,物体所受的压强p(Pa)与受力面积S(m2)的函数关系式为P(S0),这个函数的图象大致是( )ABCD11已知,且的面积为,周长是的周长的,则边上的高等于( )ABCD12某超市一月份的营业额为36万元,三月份的营业额为48万元,设每月的平均增长率为x,则可列方程为( )A48(1x)2=36B48(1+x)2=36C36(1x)2=48D36(1+x)2=48二、填空题(每题4分,共24分)13已知关于x的方程x23x2a10的一个根是0,则a_14如图,在四边形中,分别为,的中点,连接,平分,的长

4、为_15点A(m,n2)与点B(2,n)关于原点对称,则点A的坐标为_16如图,AB是半圆O的直径,AB=10,过点A的直线交半圆于点C,且sinCAB=,连结BC,点D为BC的中点已知点E在射线AC上,CDE与ACB相似,则线段AE的长为_; 17如图,已知等边的边长为,顶点在轴正半轴上,将折叠,使点落在轴上的点处,折痕为.当是直角三角形时,点的坐标为_18如图,一块飞镖游戏板由大小相等的小正方形格子构成,向游戏板随机投掷一枚飞镖,击中黑色区域的概率是_三、解答题(共78分)19(8分)一汽车租赁公司拥有某种型号的汽车100辆公司在经营中发现每辆车的月租金x(元)与每月租出的车辆数(y)有如

5、下关系:x3000320035004000y100969080(1)观察表格,用所学过的一次函数、反比例函数或二次函数的有关知识求出每月租出的车辆数y(辆)与每辆车的月租金x(元)之间的关系式.(2)已知租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元用含x(x3000)的代数式填表:租出的车辆数 未租出的车辆数 租出每辆车的月收益 所有未租出的车辆每月的维护费 (3)若你是该公司的经理,你会将每辆车的月租金定为多少元,才能使公司获得最大月收益?请求出公司的最大月收益是多少元20(8分)如图,点D,E分别在ABC的AB,AC边上,且DEBC,AGBC于点G,与DE交于点F

6、已知,BC10,AF1FG2,求DE的长21(8分)如图1,抛物线与x轴交于A,B两点(点A位于点B的左侧),与y轴负半轴交于点C,若AB1(1)求抛物线的解析式;(2)如图2,E是第三象限内抛物线上的动点,过点E作EFAC交抛物线于点F,过E作EGx轴交AC于点M,过F作FHx轴交AC于点N,当四边形EMNF的周长最大值时,求点E的横坐标;(3)在x轴下方的抛物线上是否存在一点Q,使得以Q、C、B、O为顶点的四边形被对角线分成面积相等的两部分?如果存在,求点Q的坐标;如果不存在,请说明理由22(10分)如图,直线与双曲线在第一象限内交于两点,已知(1)求的值及直线的解析式(2)根据函数图象,

7、直接写出不等式的解集(3)设点是线段上的一个动点,过点作轴于点是轴上一点,当的面积为时,请直接写出此时点的坐标23(10分)不透明的袋中有四个小球,分别标有数字1、2、3、4,它们除了数字外都相同。第一次从中摸出一个小球,记录数字后放回袋中,第二次摇匀后再随机摸出一个小球.(1)求第一次摸出的小球所标数字是偶数的概率;(2)求两次摸出的小球所标数字相同的概率.24(10分)如图,已知二次函数的图象与轴,轴分别交于A 三点,A在B的左侧,请求出以下几个问题:(1)求点A的坐标;(2)求函数图象的对称轴;(3)直接写出函数值时,自变量x的取值范围25(12分)如图,AB是O的直径,点C是圆上一点,

8、点D是半圆的中点,连接CD交OB于点E,点F是AB延长线上一点,CFEF(1)求证:FC是O的切线;(2)若CF5,求O半径的长26为进一步深化基教育课程改革,构建符合素质教育要求的学校课程体系,某学校自主开发了A书法、B阅读,C足球,D器乐四门校本选修课程供学生选择,每门课程被选到的机会均等(1)学生小红计划选修两门课程,请写出所有可能的选法;(2)若学生小明和小刚各计划送修一门课程,则他们两人恰好选修同一门课程的概率为多少?参考答案一、选择题(每题4分,共48分)1、C【分析】根据比例的性质,若,则判断即可.【详解】解: 故选:C.【点睛】本题主要考查了比例的性质,灵活的利用比例的性质进行

9、比例变形是解题的关键.2、D【分析】连接OB,如图,利用弧、弦和圆心角的关系得到 ,则利用垂径定理得到OBAC,所以ABO=ABC=60,则OAB=60,再根据圆周角定理得到ABD=90,然后利用含30度的直角三角形三边的关系计算BD的长【详解】连接OB,如图:AB=BC,OBAC,OB平分ABC,ABO=ABC=120=60,OA=OB,OAB=60,AD为直径,ABD=90,在RtABD中,AB=AD=3,BD=.故选D【点睛】考查了三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心也考查了垂径定理和圆周角定理3、A【分析】由等弧的概念判断,根据不在一

10、条直线上的三点确定一个圆,可判断;根据圆心角、弧、弦的关系判断,根据垂径定理判断.【详解】同圆或等圆中,能够互相重合的弧是等弧,故是假命题;不在一条直线上的三点确定一个圆,若三点共线,则不能确定圆,故是假命题;同圆或等圆中,相等的圆心角所对的弦相等,故是假命题;圆两条直径互相平分,但不垂直,故是假命题;所以真命题共有0个,故选A.【点睛】本题考查圆中的相关概念,熟记基本概念才能准确判断命题真假.4、C【分析】根据根与系数的关系即可求出的值【详解】解:、是一元二次方程的两个实数根故选C【点睛】此题考查的是根与系数的关系,掌握一元二次方程的两根之和=是解决此题的关键5、A【分析】根据增长率a%求出

11、第一次提价后的售价,然后再求第二次提价后的售价,即可得出答案.【详解】根据题意可得:23(1+a%)2=40,故答案选择A.【点睛】本题考查的是一元二次方程在实际生活中的应用,比较简单,记住公式“增长后的量=增长前的量(1+增长率)”.6、C【分析】由直径所对的圆周角是直角,可得ADB=90,可计算出BAD,再由同弧所对的圆周角相等得BCD=BAD.【详解】是的直径ADB=90BAD=90-ABD=32BCD=BAD=32.故选C.【点睛】本题考查圆周角定理,熟练运用该定理将角度进行转换是关键.7、B【分析】每个好友都有一次发给QQ群其他好友消息的机会,即每两个好友之间要互发一次消息;设有x个

12、好友,每人发(x-1)条消息,则发消息共有x(x-1)条,再根据共发信息1980条,列出方程x(x-1)=1980.【详解】解:设有x个好友,依题意,得:x(x-1)=1980.故选:B【点睛】本题考查了一元二次方程的应用,根据题意设出合适的未知数,再根据等量关系式列出方程是解题的关键.8、C【分析】根据方程有两个相等的实数根,判断出根的判别式为0,据此求解即可【详解】关于的方程有两个相等的实数根,解得:故选:C【点睛】本题考查了一元二次方程根的情况与判别式的关系:(1)0方程有两个不相等的实数根;(2)=0方程有两个相等的实数根;(3)0方程没有实数根9、D【分析】根据抛物线的平移规律“上加

13、下减,左加右减”求解即可.【详解】解:将抛物线向左平移2个单位后所得到的抛物线为:.故选D.【点睛】本题考查了抛物线的平移,属于基础知识,熟知抛物线的平移规律是解题的关键.10、C【分析】根据实际意义以及函数的解析式,根据函数的类型,以及自变量的取值范围即可进行判断【详解】解:当F一定时,P与S之间成反比例函数,则函数图象是双曲线,同时自变量是正数故选:C【点睛】此题主要考查了反比例函数的应用,现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用实际意义确定其所在的象限11、B【分析】根据相似三角形的周长比等于相似比可得两个三角形的相似比,根据相似

14、三角形的面积比等于相似比的平方可求出ABC的面积,进而可求出AB边上的高【详解】,周长是的周长的,与的相似比为,SABC=,SABC=24,AB=8,AB边上的高=6,故选:B【点睛】本题考查相似三角形的性质,相似三角形的周长比等于相似比;相似三角形的面积比等于相似比的平方;熟练掌握相关性质是解题关键12、D【分析】主要考查增长率问题,一般用增长后的量=增长前的量(1+增长率),如果设教育经费的年平均增长率为x,然后根据已知条件可得出方程【详解】某超市一月份的营业额为36万元,每月的平均增长率为x,二月份的营业额为36(1+x),三月份的营业额为36(1+x)(1+x)=36(1+x)2.根据

15、三月份的营业额为48万元,可列方程为36(1+x)2=48.故选D.【点睛】本题考查了一元二次方程的应用,找到关键描述语,就能找到等量关系,是解决问题的关键同时要注意增长率问题的一般规律.二、填空题(每题4分,共24分)13、【分析】把x=0代入原方程可得关于a的方程,解方程即得答案【详解】解:关于x的方程x23x2a10的一个根是x=0,2a10,解得:a=故答案为:【点睛】本题考查了一元二次方程的解的定义,属于基础题型,熟练掌握基本知识是解题关键14、【分析】根据三角形中位线定理得MN=AD,根据直角三角形斜边中线定理得BM=AC,由此即可证明BM=MN再证明BMN=90,根据BN2=BM

16、2+MN2即可解决问题【详解】在中,、分别是、的中点,在中,是中点,平分,故答案为【点睛】本题考查了三角形中位线定理、直角三角形斜边中线定理、勾股定理等知识,解题的关键是灵活应用:三角形的中位线平行于第三边,并且等于第三边的一半15、(2,1)【解析】关于原点对称的两个坐标点,其对应横纵坐标互为相反数.【详解】解:由题意得m=2,n-2=-n,解得n=1,故A点坐标为(2,1)【点睛】本题考查了关于原点中心对称的两个坐标点的特点.16、3或9 或或【分析】先根据圆周角定理及正弦定理得到BC=8,再根据勾股定理求出AC=6,再分情况讨论,从而求出AE.【详解】AB是半圆O的直径,ACB=90,s

17、inCAB=, ,AB=10,BC=8,,点D为BC的中点,CD=4.ACB=DCE=90,当CDE1=ABC时,ACBE1CD,如图,即,CE1=3,点E1在射线AC上,AE1=6+3=9,同理:AE2=6-3=3.当CE3D=ABC时,ABCDE3C,如图,即,CE3=,AE3=6+=,同理:AE4=6-=.故答案为:3或9 或或.【点睛】此题考查相似三角形的判定及性质,当三角形的相似关系不是用相似符号连接时,一定要分情况来确定两个三角形的对应关系,这是解此题容易错误的地方.17、,【解析】当AEx轴时,AEO是直角三角形,可根据AOE的度数用OA表示出OE和AE,由于AEAE,且AEOE

18、OA,由此可求出OA的长,也就能求出AE的长,据此可求出A的坐标;当AEO=90时,AEO是直角三角形,设OE=x,则AE=AE=-x,根据三角函数的关系列出方程即可求解x,从而求出A的坐标.【详解】当AEx轴时,OAE是直角三角形,故AOE60,AEAE,设A的坐标为(0,b),AEAEAOtan60=b,OE2b,b2b2,b1,A的坐标是(0,1);当AEO=90时,AEO是直角三角形,设OE=x,则AE=AE=-x,AOB=60,AE=OEtan60=x=-x解得x=AO=2OE=A(0,)综上,A的坐标为,.【点睛】此题主要考查图形与坐标,解题的关键是熟知等边三角形的性质、三角函数的

19、应用.18、【分析】求出黑色区域面积与正方形总面积之比即可得答案.【详解】图中有9个小正方形,其中黑色区域一共有3个小正方形,所以随意投掷一个飞镖,击中黑色区域的概率是,故答案为【点睛】本题考查了几何概率,熟练掌握概率的计算公式是解题的关键.注意面积之比几何概率三、解答题(共78分)19、(1)y与x间的函数关系是(2)填表见解析;(3)当每辆车的月租金为4050元时,公司获得最大月收益307050元【解析】(1)判断出y与x的函数关系为一次函数关系,再根据待定系数法求出函数解析式(2)根据题意可用代数式求出出租车的辆数和未出租车的辆数即可(3)租出的车的利润减去未租出车的维护费,即为公司最大

20、月收益【详解】解:(1)由表格数据可知y与x是一次函数关系,设其解析式为,将(3000,100),(3200,96)代入得,解得:将(3500,90),(4000,80)代入检验,适合y与x间的函数关系是(2)填表如下:租出的车辆数未租出的车辆数租出每辆车的月收益所有未租出的车辆每月的维护费(3)设租赁公司获得的月收益为W元,依题意可得:当x=4050时,Wmax=307050,当每辆车的月租金为4050元时,公司获得最大月收益307050元20、2【分析】根据DEBC得出ADEABC,然后利用相似三角形的高之比等于相似比即可求出DE的长度【详解】解:DEBC,ADEABC,AGBC,AFDE

21、,BC10,AF1,FG2,DE102【点睛】本题主要考查相似三角形的性质,掌握相似三角形的性质是解题的关键21、(1);见解析;(2);见解析;(3)存在,点Q的坐标为:(1,1)或(,)或(,);详解解析【分析】(1)0,则根据根与系数的关系有AB,即可求解;(2)设点E,点F,四边形EMNF的周长CME+MN+EF+FN,即可求解;(3)分当点Q在第三象限、点Q在第四象限两种情况,分别求解即可【详解】解:(1)依题意得:=0,则,则AB,解得:a5或3,抛物线与y轴负半轴交于点C,故a5舍去,则a3,则抛物线的表达式为:;(2)由得:点A、B、C的坐标分别为:、,设点E,OAOC,故直线

22、AC的倾斜角为15,EFAC,直线AC的表达式为:yx3,则设直线EF的表达式为:yx+b,将点E的坐标代入上式并解得:直线EF的表达式为:yx+,联立并解得:xm或3m,故点F,点M、N的坐标分别为:、,则EF,四边形EMNF的周长CME+MN+EF+FN,20,故S有最大值,此时m,故点E的横坐标为:;(3)当点Q在第三象限时,当QC平分四边形面积时,则,故点Q;当BQ平分四边形面积时,则,则,解得:,故点Q;当点Q在第四象限时,同理可得:点Q;综上,点Q的坐标为:或或【点睛】本题考查的是二次函数的综合运用,涉及到一次函数、图形的面积计算等,其中(1)(3)都要注意分类求解,避免遗漏22、

23、(1),(2)解集为或(3)【分析】(1)先把B(2,1)代入,求出反比例函数解析式,进而求出点A坐标,最后用待定系数法,即可得出直线AB的解析式;(2)直接利用函数图象得出结论;(3)先设出点P坐标,进而表示出PED的面积等于,解之即可得出结论【详解】解:(1):点在双曲线上,双曲线的解析式为.在双曲线,.直线过两点,解得直线的解析式为(2)根据函数图象,由不等式与函数图像的关系可得:双曲线在直线上方的部分对应的x范围是:或,不等式的解集为或.(3)点的坐标为.设点,且,则.当时,解得,此时点的坐标为.【点睛】此题是反比例函数综合题,主要考查了一次函数和反比例函数的图象和性质,待定系数法,三

24、角形的面积公式,求出直线AB的解析式是解本题的关键23、(1)(数字是偶数);(2)(数字相同)【分析】(1)利用概率公式求概率即可;(2)先列表,然后根据概率公式计算概率即可【详解】解:(1)第一次摸出的小球共有4种等可能的结果,其中摸出的小球所标数字是偶数的结果有2种,(数字是偶数)=24(2)列表如下:第二次 第一次123411,12,13,14,121,22,23,24,231,32,33,34,341,42,43,44,4由表格可知:共有16种等可能的结果,其中两次摸出的小球所标数字相同的可能有4种(数字相同)=416【点睛】此题考查的是求概率问题,掌握列表法和概率公式是解决此题的关键24、(1)A() B();(2)x;(3)【分析】(1)令则,解方程即可;(2)根据二次函数的对称轴公式代入计算即可;(3)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论