天津市东丽区名校2023学年数学九年级第一学期期末质量跟踪监视模拟试题含解析_第1页
天津市东丽区名校2023学年数学九年级第一学期期末质量跟踪监视模拟试题含解析_第2页
天津市东丽区名校2023学年数学九年级第一学期期末质量跟踪监视模拟试题含解析_第3页
天津市东丽区名校2023学年数学九年级第一学期期末质量跟踪监视模拟试题含解析_第4页
天津市东丽区名校2023学年数学九年级第一学期期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2023学年九上数学期末模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(每题4分,共48分)1如图,在正方形ABCD中,点E,F分别在BC,CD上,AEAF

2、,AC与EF相交于点G,下列结论:AC垂直平分EF;BE+DFEF;当DAF15时,AEF为等边三角形;当EAF60时,SABESCEF,其中正确的是()ABCD2已知:如图,菱形ABCD的周长为20cm,对角线AC=8cm,直线l从点A出发,以1cm/s的速度沿AC向右运动,直到过点C为止在运动过程中,直线l始终垂直于AC,若平移过程中直线l扫过的面积为S(cm2),直线l的运动时间为t(s),则下列最能反映S与t之间函数关系的图象是()ABCD3下列一元二次方程,有两个不相等的实数根的是( )ABCD4用配方法解方程x2-4x+30时,原方程应变形为( )A(x+1)21B(x-1)21C

3、(x+2)21D(x-2)215如图,在中,将AOC绕点O顺时针旋转后得到,则AC边在旋转过程中所扫过的图形的面积为( )ABCD6如图,如果从半径为6cm的圆形纸片剪去圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的底面半径为( )A2cmB4cmC6cmD8cm7方程x22x4=0的根的情况()A只有一个实数根B有两个不相等的实数根C有两个相等的实数根D没有实数根8抛物线的对称轴为直线( )ABCD9如图,为线段上一动点(点不与点、重合),在线段的同侧分别作等边和等边,连结、,交点为若,求动点运动路径的长为( )ABCD10已知线段MN4cm,P是线段MN的黄金分割

4、点,MPNP,那么线段MP的长度等于()A(2+2)cmB(22)cmC(+1)cmD(1)cm11如图,已知点A(m,m+3),点B(n,n3)是反比例函数y(k0)在第一象限的图象上的两点,连接AB将直线AB向下平移3个单位得到直线l,在直线l上任取一点C,则ABC的面积为( )AB6CD912已知反比例函数的图象在二、四象限,则的取值范围是( )ABCD二、填空题(每题4分,共24分)13已知反比例函数的图像上有两点M,N,且,那么与之间的大小关系是_.14分解因式:x3yxy3=_15.甲、乙、丙、丁四位同学在五次数学测验中他们成绩的平均分相等,方差分别是2.3,3.8,5.2,6.2

5、,则成绩最稳定的同学是_.16如图,六边形ABCDEF是正六边形,曲线FK1K2K3K4K5K6K7叫做“正六边形的渐开线”,其中弧FK1、弧K1K2、弧K2K3、弧K3K4、弧K4K5、弧K5K6、的圆心依次按点A、B、C、D、E、F循环,其弧长分别为l1、l2、l3、l4、l5、l6、当AB1时,l3=_,l2019_17已知扇形的圆心角为90,弧长等于一个半径为5cm的圆的周长,用这个扇形恰好围成一个圆锥的侧面(接缝忽略不计)则该圆锥的高为_cm18若是关于的一元二次方程,则_三、解答题(共78分)19(8分)已知:关于x的方程,(1)求证:无论k取任何实数值,方程总有实数根;(2)若等

6、腰三角形ABC的一边长a=1,两个边长b,c恰好是这个方程的两个根,求ABC的周长20(8分)如图,在正方形中,点在正方形边上沿运动(含端点),连接,以为边,在线段右侧作正方形,连接、. 小颖根据学习函数的经验,在点运动过程中,对线段、的长度之间的关系进行了探究.下面是小颖的探究过程,请补充完整:(1)对于点在、边上的不同位置,画图、测量,得到了线段、的长度的几组值,如下表:位置位置位置位置位置位置位置在、和的长度这三个量中,确定 的长度是自变量, 的长度和 的长度都是这个自变量的函数.(2)在同一平面直角坐标系中,画出(1)中所确定的函数的图象:(3)结合函数图像,解决问题:当为等腰三角形时

7、,的长约为 21(8分)如图,已知直线y=x+4与反比例函数的图象相交于点A(2,a),并且与x轴相交于点B(1)求a的值;(2)求反比例函数的表达式;(3)求AOB的面积22(10分)用配方法把二次函数y=2x2+6x+4化为y=a(x+m)2+k的形式,再指出该函数图象的开口方向、对称轴和顶点坐标23(10分)在平面直角坐标系xOy中,已知抛物线,其顶点为A(1)写出这条抛物线的开口方向、顶点A的坐标,并说明它的变化情况;(2)直线BC平行于x轴,交这条抛物线于B、C两点(点B在点C左侧),且,求点B坐标24(10分)如图,在ABC中,ABAC,O是ABC的外接圆,D为弧AC的中点,E是B

8、A延长线上一点,DAE105(1)求CAD的度数;(2)若O的半径为4,求弧BC的长25(12分)已知:如图,在ABC中,ADBC于点D,E是AD的中点,连接CE并延长交边AB于点F,AC13,BC8,cosACB(1)求tanDCE的值;(2)求的值26某无人机兴趣小组在操场上开展活动(如图),此时无人机在离地面30米的D处,无人机测得操控者A的俯角为37,测得点C处的俯角为45又经过人工测量操控者A和教学楼BC距离为57米,求教学楼BC的高度(注:点A,B,C,D都在同一平面上参考数据:sin370.60,cos370.80,tan370.75)参考答案一、选择题(每题4分,共48分)1、

9、C【解析】通过条件可以得出ABEADF,从而得出BAE=DAF,BE=DF,由正方形的性质就可以得出EC=FC,就可以得出AC垂直平分EF,设BC=a,CE=y,由勾股定理就可以得出EF与x、y的关系,表示出BE与EF,即可判断BE+DF与EF关系不确定;当DAF=15时,可计算出EAF=60,即可判断EAF为等边三角形,当EAF=60时,设EC=x,BE=y,由勾股定理就可以得出x与y的关系,表示出BE与EF,利用三角形的面积公式分别表示出SCEF和SABE,再通过比较大小就可以得出结论【详解】四边形ABCD是正方形,ABAD,B=D=90在RtABE和RtADF中,RtABERtADF(H

10、L),BE=DFBC=CD,BC-BE=CD-DF,即CE=CF,AE=AF,AC垂直平分EF(故正确)设BC=a,CE=y,BE+DF=2(a-y)EF=y,BE+DF与EF关系不确定,只有当y=(2)a时成立,(故错误)当DAF=15时,RtABERtADF,DAF=BAE=15,EAF=90-215=60,又AE=AFAEF为等边三角形(故正确)当EAF=60时,设EC=x,BE=y,由勾股定理就可以得出:(x+y)2+y2(x)2x2=2y(x+y)SCEF=x2,SABE=y(x+y),SABE=SCEF(故正确)综上所述,正确的有,故选C【点睛】本题考查了正方形的性质的运用,全等三

11、角形的判定及性质的运用,勾股定理的运用,等边三角形的性质的运用,三角形的面积公式的运用,解答本题时运用勾股定理的性质解题时关键2、B【分析】先由勾股定理计算出BO,OD,进而求出AMN的面积.从而就可以得出0t4时的函数解析式;再得出当4t8时的函数解析式【详解】解:连接BD交AC于点O,令直线l与AD或CD交于点N,与AB或BC交于点M菱形ABCD的周长为20cm,AD=5cmAC=8cm,AO=OC=4cm,由勾股定理得OD=OB=3cm,分两种情况:(1)当0t4时,如图1,MNBD,AMNABD,MN=t,S=MNAE=tt=t2函数图象是开口向上,对称轴为y轴且位于对称轴右侧的抛物线

12、的一部分;(2)当4t8时,如图2,MNBD,CMNCBD,MN=t+12,S=S菱形ABCD-SCMN=t2+12t-24=(t-8)2+24.函数图象是开口向下,对称轴为直线t=8且位于对称轴左侧的抛物线的一部分故选B【点睛】本题是动点函数图象题型,当某部分的解析式好写时,可以写出来,结合排除法,答案还是不难得到的3、B【分析】分别计算出各选项中方程根的判别式的值,找出大于0的选项即可得答案【详解】A.方程x2+6x+9=0中,=62-419=0,故方程有两个相等的实数根,不符合题意,B.方程中,=(-1)2-410=10,故方程有两个不相等的实数根,符合题意,C.方程可变形为(x+1)2

13、=-10,故方程没有实数根,不符合题意,D.方程中,=(-2)2-413=-80,故方程没有实数根,不符合题意,故选:B【点睛】本题考查一元二次方程根的判别式,对于一元二次方程ax2+bx+c=0(a0),根的判别式为=b2-4ac,当0时,方程有两个不相等的实数根;当=0时,方程有两个相等的实数根,当0时,方程没有实数根4、D【分析】根据配方时需在方程的左右两边同时加上一次项系数一半的平方解答即可【详解】移项,得 x2-4x=-3,配方,得 x2-2x+4=-3+4,即(x-2)2=1,故选:D.【点睛】本题考查了一元二次方程的解法配方法,熟练掌握配方时需在方程的左右两边同时加上一次项系数一

14、半的平方是解题的关键.5、B【分析】根据旋转的性质可以得到阴影部分的面积扇形OAB的面积扇形OCD的面积,利用扇形的面积公式即可求解【详解】解:阴影部分的面积扇形OAB的面积扇形OCD的面积故选B【点睛】考查了旋转的性质以及扇形的面积公式,正确理解:阴影部分的面积扇形OAB的面积扇形OCD的面积是解题关键6、B【分析】因为圆锥的高,底面半径,母线构成直角三角形,首先求得留下的扇形的弧长,利用勾股定理求圆锥的高即可.【详解】解:从半径为6cm的圆形纸片剪去圆周的一个扇形,剩下的扇形的角度=360=240,留下的扇形的弧长=,圆锥的底面半径cm;故选:B.【点睛】此题主要考查了主要考查了圆锥的性质

15、,要知道(1)圆锥的高,底面半径,母线构成直角三角形,(2)此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长7、B【详解】=b24ac=(2)241(4)=200,所以方程有两个不相等的实数根.故选B.【点睛】一元二次方程根的情况:(1)b24ac0,方程有两个不相等的实数根;(2)b24ac=0,方程有两个相等的实数根;(3)b24ac0,方程没有实数根.注:若方程有实数根,那么b24ac0.8、C【解析】根据二次函数对称轴公式为直线,代入求解即可【详解】解:抛物线的对称轴为直线,故答案为C【点睛】本题考查了二次函数的对称轴公式,熟记公式是解题的关键9、B【分析】根据题意分析得出点Q

16、运动的轨迹是以AB为弦的一段圆弧,当点P运动到AB的中点处时PQ取得最大值,过点P作OPAB,取AQ的中点E作OEAQ交PQ于点O,连接OA,设半径长为R,则根据勾股定列出方程求出R的值,再根据弧长计算公式l=求出l值即可.【详解】解:依题意可知,点Q运动的轨迹是以AB为弦的一段圆弧,当点P运动到AB的中点处时PQ取得最大值,如图所示,连接PQ,取AQ的中点E作OEAQ交直线PQ于点O,连接OA,OB.P是AB的中点,PA=PB=AB=6=3.和是等边三角形,AP=PC,PB=PD,APC=BPD=60,AP=PD,APD=120.PAD=ADP=30,同理可证:PBQ=BCP=30,PAD=

17、PBQ.AP=PB,PQAB.tanPAQ= PQ= .在RtAOP中, 即解得:OA= .sinAOP= AOP=60.AOB=120.l= .故答案选B.【点睛】本题考查了弧长计算公式,等边三角形的性质,垂直平分线的性质,等腰三角形的性质,勾股定理,三角函数等知识,综合性较强,明确点Q的运动轨迹是一段弧是解题的关键.10、B【解析】根据黄金分割的定义进行作答.【详解】由黄金分割的定义知,又MN=4,所以,MP=2 2. 所以答案选B.【点睛】本题考查了黄金分割的定义,熟练掌握黄金分割的定义是本题解题关键.11、A【分析】由点A(m,m+3),点B(n,n3)在反比例函数y(k0)第一象限的

18、图象上,可得到m、n之间的关系,过点A、B分别作x轴、y轴的平行线,构造直角三角形,可求出直角三角形的直角边的长,由平移可得直角三角形的直角顶点在直线l上,进而将问题转化为求ADB的面积【详解】解:点A(m,m+3),点B(n,n3)在反比例函数y(k0)第一象限的图象上,km(m+3)n(n3),即:(m+n)(mn+3)0,m+n0,mn+30,即:mn3,过点A、B分别作x轴、y轴的平行线相交于点D,BDxBxAnm3,ADyAyBm+3(n3)mn+63,又直线l是由直线AB向下平移3个单位得到的,平移后点A与点D重合,因此,点D在直线l上,SACBSADBADBD,故选:A【点睛】本

19、题主要考察反比例函数与一次函数的交点问题,解题关键是熟练掌握计算法则.12、D【分析】由题意根据反比例函数的性质即可确定的符号,进行计算从而求解【详解】解:因为反比例函数的图象在二、四象限,所以,解得.故选:D.【点睛】本题考查反比例函数的性质,注意掌握反比例函数,当 k0时,反比例函数图象在一、三象限;当k0时,反比例函数图象在第二、四象限内二、填空题(每题4分,共24分)13、【分析】根据反比例函数特征即可解题。【详解】,故答案为【点睛】本题考查反比例函数上点的坐标特征,注意反比例函数是分别在各自象限内存在单调性。14、xy(x+y)(xy)【解析】分析:首先提取公因式xy,再对余下的多项

20、式运用平方差公式继续分解详解:x3yxy3=xy(x2y2)=xy(x+y)(xy)点睛:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式,要首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止15、甲【分析】方差反映了一组数据的波动情况,方差越小越稳定,据此可判断.【详解】2.33.85.26.2,,成绩最稳定的是甲.故答案为:甲.【点睛】本题考查了方差的概念,正确理解方差所表示的意义是解题的关键.16、 673 【分析】用弧长公式,分别计算出l1,l2,l3,的长,寻找其中的规律,确定l2019的长【详解】解:根据题意得:l1=,l2=,l3=,

21、则l2019=.故答案为:;673.【点睛】本题考查的是弧长的计算,先用公式计算,找出规律,则可求出ln的长17、【分析】利用弧长公式求该扇形的半径,圆锥的轴截面为等腰三角形,其中底边为10,腰为母线即扇形的半径,根据勾股定理求圆锥的高.【详解】解:设扇形半径为R,根据弧长公式得, R=20,根据勾股定理得圆锥的高为: .故答案为: .【点睛】本题考查弧长公式,及圆锥的高与母线、底面半径之间的关系,底面周长等于扇形的弧长这个等量关系和勾股定理是解答此题的关键.18、1【分析】根据一元二次方程的定义,从而列出关于m的关系式,求出答案.【详解】根据题意可知:m10且m12,解得:m1,故答案为m1

22、.【点睛】本题主要考查了一元二次方程的定义,解本题的要点在于知道一元二次方程中二次项系数不能为0.三、解答题(共78分)19、(1)证明见解析;(2)ABC的周长为1【分析】(1)根据一元二次方程根与判别式的关系即可得答案;(2)分a为底边和a为腰两种情况,当a为底边时,b=c,可得方程的判别式=0,可求出k值,解方程可求出b、c的值;当a为一腰时,则方程有一根为1,代入可求出k值,解方程可求出b、c的值,根据三角形的三边关系判断是否构成三角形,进而可求出周长【详解】(1)判别式=-(k+2)-42k=k-4k+4=(k-2)0,无论k取任何实数值,方程总有实数根(2)当a=1为底边时,则b=

23、c,=(k-2)=0,解得:k=2,方程为x2-4x+4=0,解得:x1=x2=2,即b=c=2,1、2、2可以构成三角形,ABC的周长为:1+2+2=1当a=1为一腰时,则方程有一个根为1,1-(k+2)+2k=0,解得:k=1,方程为x2-3x+2=0,解得:x1=1,x2=2,1+1=2,1、1、2不能构成三角形,综上所述:ABC的周长为1【点睛】本题考查一元二次方程根的判别式及三角形的三边关系一元二次方程根的情况与判别式的关系:当0时,方程有两个不相等的实数根;当=0时,方程有两个相等的实数根;当0,方程没有实数根;三角形任意两边之和大于第三边,任意两边之差小于第三边;熟练掌握根与判别

24、式的关系是解题关键20、(1);(2)画图见解析;(3)或或【分析】(1)根据表格的数据,结合自变量与函数的定义,即可得到答案;(2)根据列表、描点、连线,即可得到函数图像;(3)可分为AE=DF,DF=DG,AE=DG,结合图像,即可得到答案.【详解】解:(1)根据表格可知,从0开始,而且不断增大,则DG是自变量;和随着DG的变化而变化,则AE和DF都是DG的函数;故答案为:,.(2)函数图像,如图所示:(3)为等腰三角形,则可分为:AE=DF或DF=DG或AE=DG,三种情况;根据表格和函数图像可知,当AE=DG=时,为等腰三角形;当AE=时,DF=DG=5.00,为等腰三角形;当AE=D

25、F=时,为等腰三角形;故答案为:或或.【点睛】本题考查了函数的定义,自变量的定义,画函数图像,以及等腰三角形的定义,解题的关键是掌握函数的定义,准确画出函数图像.21、(1)a=6;(2) ;(3)1【解析】(1)把A的坐标代入直线解析式求a;(2)把求出的A点坐标代入反比例解析式中求k,从而得解析式;求B点坐标,结合A点坐标求面积【详解】解:(1)将A(2,a)代入y=x+4中,得:a=(2)+4,所以a=6(2)由(1)得:A(2,6)将A(2,6)代入中,得到:,即k=1所以反比例函数的表达式为:(3)如图:过A点作ADx轴于D;A(2,6)AD=6在直线y=x+4中,令y=0,得x=4

26、B(4,0),即OB=4AOB的面积S=OBAD=46=1考点:反比例函数综合题22、开口向下,对称轴为直线,顶点【解析】试题分析:先通过配方法对二次函数的一般式进行配方成顶点式,再根据二次函数图象性质写出开口方向,对称轴,顶点坐标.试题解析:,=,=,开口向下,对称轴为直线,顶点.23、(1)开口方向向下,点A的坐标是,在对称轴直线左侧部分是上升的,右侧部分是下降的;(2)点B的坐标为【分析】(1)先化为顶点式,然后由二次函数的性质可求解;(2)如图,设直线与对称轴交于点,则,设线段的长为,则,可求点坐标,代入解析式可求的值,即可求点坐标【详解】解:(1)抛物线的开口方向向下,顶点的坐标是,抛物线的变化情况是:在对称轴直线左侧部分是上升的,右侧部分是下降的;(2)如图,设直线与对称轴交于点,则设线段的长为,则,点的坐标可表示为,代入,得解得(舍,点的坐标为【点睛】本题是二次函数综合题,考查了二次函数的性质,二次函数的应用,利用参数求点坐标是本题的关键24、(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论