湖南长沙一中学岳麓中学2023学年数学九上期末考试模拟试题含解析_第1页
湖南长沙一中学岳麓中学2023学年数学九上期末考试模拟试题含解析_第2页
湖南长沙一中学岳麓中学2023学年数学九上期末考试模拟试题含解析_第3页
湖南长沙一中学岳麓中学2023学年数学九上期末考试模拟试题含解析_第4页
湖南长沙一中学岳麓中学2023学年数学九上期末考试模拟试题含解析_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2023学年九上数学期末模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1如图,正方形中,点是以为直径的半圆与对角线的交点现随机向正方形内投掷一枚小针,则针尖落在阴影区域的概率为( )ABCD2如图,AB为O的直径,点C在O上,若,则的长为( )ABCD3如图

2、,等边的边长为 是边上的中线,点是 边上的中点. 如果点是 上的动点,那么的最 小值为( )ABCD4已知,则( )A2BC3D5如图,已知与位似,位似中心为点且的面积与面积之比为,则的值为( )ABCD6抛物线的顶点坐标是 ABCD7如图,在正方形ABCD中,G为CD边中点,连接AG并延长,分别交对角线BD于点F,交BC边延长线于点E若FG2,则AE的长度为( )A6B8C10D128如图摆放的圆锥、圆柱、三棱柱、球,其主视图是三角形的是()ABCD9袋中装有除颜色外其他完全相同的4个小球,其中3个红色,一个白色,从袋中任意地摸出两个球,这两个球颜色相同的概率是( )ABCD10把二次函数配

3、方后得( )ABCD11如图,在矩形ABCD中,AB12,P是AB上一点,将PBC沿直线PC折叠,顶点B的对应点是G,过点B作BECG,垂足为E,且在AD上,BE交PC于点F,则下列结论,其中正确的结论有()BPBF;若点E是AD的中点,那么AEBDEC;当AD25,且AEDE时,则DE16;在的条件下,可得sinPCB;当BP9时,BEEF1A2个B3个C4个D5个12在半径为6cm的圆中,长为6cm的弦所对的圆周角的度数为( )A30B60C30或150D60或120二、填空题(每题4分,共24分)13如图,在平面直角坐标系中,点A、B的坐标分别是(0,2)、(4,0),点P是直线y=2x

4、+2上的一动点,当以P为圆心,PO为半径的圆与AOB的一条边所在直线相切时,点P的坐标为_14在国庆节的一次同学聚会上,每人都向其他人赠送了一份小礼品,共互送110份小礼品,则参加聚会的有_名同学15如图,有一张矩形纸片,长15cm,宽9cm,在它的四角各剪去一个同样的小正方形,然折叠成一个无盖的长方体纸盒若纸盒的底面(图中阴影部分)面积是48cm2,求剪去的小正方形的边长设剪去的小正方形边长是xcm,根据题意可列方程为_16如图,AB是O的直径,弦CDAB于点E,若CDB30,O的半径为5cm则圆心O到弦CD的距离为_17已知二次函数yax2+bx+c的图象如图,对称轴为直线x1,则不等式a

5、x2+bx+c0的解集是_18在ABC中,点D、E分别在AB、AC上,AED=B,若AE=2,ADE的面积为4,四边形BCED的面积为5,则边AB的长为_ 三、解答题(共78分)19(8分)如图,中,为内部一点,且.(1)求证:;(2)求证:;(3)若点到三角形的边,的距离分别为,求证.20(8分)学校决定每班选取名同学参加全国交通安全日细节关乎生命安全文明出行主题活动启动仪式,班主任决定从名同学(小明、小山、小月、小玉)中通过抽签的方式确定名同学去参加该活动抽签规则:将名同学的姓名分别写在张完全相同的卡片正面,把张卡片的背面朝上,洗匀后放在桌子上,王老师先从中随机抽取一张卡片,记下名字,再从

6、剩余的张卡片中随机抽取一张,记下名字(1)小刚被抽中是_事件,小明被抽中是_事件(填不可能、必然、随机),第一次抽取卡片抽中是小玉的概率是_;(2)试用画树状图或列表的方法表示这次抽签所有可能的结果,并求出小月被抽中的概率21(8分)利川市南门大桥是上世纪90年代修建的一座石拱桥,其主桥孔的横截面是一条抛物线的一部分,2019年在维修时,施工队测得主桥孔最高点到水平线的高度为.宽度为.如图所示,现以点为原点,所在直线为轴建立平面直角坐标系.(1)直接写出点及抛物线顶点的坐标;(2)求出这条抛物线的函数解析式;(3)施工队计划在主桥孔内搭建矩形“脚手架”,使点在抛物线上,点在水平线上,为了筹备材

7、料,需求出“脚手架”三根钢管的长度之和的最大值是多少?请你帮施工队计算.22(10分)如图,已知点C(0,3),抛物线的顶点为A(2,0),与y轴交于点B(0,1),F在抛物线的对称轴上,且纵坐标为1点P是抛物线上的一个动点,过点P作PMx轴于点M,交直线CF于点H,设点P的横坐标为m(1)求抛物线的解析式;(2)若点P在直线CF下方的抛物线上,用含m的代数式表示线段PH的长,并求出线段PH的最大值及此时点P的坐标;(3)当PFPM1时,若将“使PCF面积为2”的点P记作“巧点”,则存在多个“巧点”,且使PCF的周长最小的点P也是一个“巧点”,请直接写出所有“巧点”的个数,并求出PCF的周长最

8、小时“巧点”的坐标23(10分)如图,抛物线交轴于两点,交轴于点,点的坐标为,直线经过点.(1)求抛物线的函数表达式;(2)点是直线上方抛物线上的一动点,求面积的最大值并求出此时点的坐标;(3)过点的直线交直线于点,连接当直线与直线的一个夹角等于的2倍时,请直接写出点的坐标.24(10分)如图所示,在ABC中,B90,AB11mm,BC14mm,动点P从点A开始,以1mm/S的速度沿边AB向B移动(不与点B重合),动点Q从点B开始,以4m/s的速度沿边BC向C移动(不与C重合),如果P、Q分别从A、B同时出发,设运动的时间为xs,四边形APQC的面积为ymm1(1)写出y与x之间的函数表达式;

9、(1)当x1时,求四边形APQC的面积25(12分)如图,海面上一艘船由西向东航行,在处测得正东方向上一座灯塔的最高点的仰角为,再向东继续航行到达处,测得该灯塔的最高点的仰角为根据测得的数据,计算这座灯塔的高度(结果取整数)参考数据:,26果农周大爷家的红心猕猴桃深受广大顾客的喜爱,猕猴桃成熟上市后,他记录了10天的销售数量和销售单价,其中销售单价y(元/千克)与时间第x天(x为整数)的数量关系如图所示,日销量P(千克)与时间第x天(x为整数)的部分对应值如表所示:(1)请直接写出p与x的函数关系式及自变量x的取值范围;(2)求y与x的函数关系式,并写出自变量x的取值范围;(3)在这10天中,

10、哪一天销售额达到最大,最大销售额是多少元参考答案一、选择题(每题4分,共48分)1、B【分析】连接BE,如图,利用圆周角定理得到AEB=90,再根据正方形的性质得到AE=BE=CE,于是得到阴影部分的面积=BCE的面积,然后用BCE的面积除以正方形ABCD的面积可得到镖落在阴影部分的概率【详解】解:连接BE,如图,AB为直径,AEB=90,而AC为正方形的对角线,AE=BE=CE,弓形AE的面积=弓形BE的面积,阴影部分的面积=BCE的面积,镖落在阴影部分的概率=故选:B【点睛】本题考查了几何概率:某事件的概率=这个事件所对应的面积除以总面积也考查了正方形的性质2、B【分析】直接利用等腰三角形

11、的性质得出A的度数,再利用圆周角定理得出BOC的度数,再利用弧长公式求出答案【详解】解:OCA=50,OA=OC,A=50,BOC=2A=100,AB=4,BO=2,的长为: 故选B【点睛】此题主要考查了弧长公式应用以及圆周角定理,正确得出BOC的度数是解题关键3、D【分析】要求EP+CP的最小值,需考虑通过作辅助线转化EP,CP的值,从而找出其最小值求解【详解】连接BE,与AD交于点GABC是等边三角形,AD是BC边上的中线,ADBC,AD是BC的垂直平分线,点C关于AD的对称点为点B,BE就是EP+CP的最小值G点就是所求点,即点G与点P重合,等边ABC的边长为8,E为AC的中点,CE=4

12、,BEAC,在直角BEC中,BE=,EP+CP的最小值为,故选D.【点睛】此题考查轴对称-最短路线问题,等边三角形的对称性、三线合一的性质以及勾股定理的运用,熟练掌握,即可解题.4、B【解析】直接利用相似三角形的性质求解【详解】ABCABC, 又AB8,AB6,= .故选B.【点睛】此题考查相似三角形的性质,难度不大5、A【分析】根据位似图形的性质得到AC:DF=3:1,ACDF,再证明,根据相似的性质进而得出答案【详解】与位似,且的面积与面积之比为9:4,AC:DF=3:1,ACDF,ACO=DFO,CAO=FDO,AO:OD=AC:DF=3:1故选:A【点睛】本题考查位似图形的性质,及相似

13、三角形的判定与性质,注意掌握位似是相似的特殊形式,位似比等于相似比,其对应的面积比等于相似比的平方6、A【分析】已知抛物线顶点式y=a(xh)2+k,顶点坐标是(h,k)【详解】抛物线y=3(x1)2+1是顶点式,顶点坐标是(1,1)故选A【点睛】本题考查了由抛物线的顶点式写出抛物线顶点的坐标,比较容易7、D【解析】根据正方形的性质可得出ABCD,进而可得出ABFGDF,根据相似三角形的性质可得出=2,结合FG=2可求出AF、AG的长度,由ADBC,DG=CG,可得出AG=GE,即可求出AE=2AG=1【详解】解:四边形ABCD为正方形,AB=CD,ABCD, ABF=GDF,BAF=DGF,

14、ABFGDF,=2,AF=2GF=4,AG=2ADBC,DG=CG,=1,AG=GEAE=2AG=1故选:D【点睛】本题考查了相似三角形的判定与性质、正方形的性质,利用相似三角形的性质求出AF的长度是解题的关键8、D【解析】根据主视图是从物体正面看所得到的图形判断即可【详解】A.主视图是圆;B.主视图是矩形;C.主视图是矩形;D.主视图是三角形故选:D【点睛】本题主要考查了几何体的三种视图,掌握定义是关键注意所有的看到的棱都应表现在三视图中9、A【分析】用树形图法确定所有情况和所需情况,然后用概率公式解答即可【详解】解:画树状图如下:则总共有12种情况,其中有6种情况是两个球颜色相同的,故其概

15、率为故答案为A【点睛】本题考查画树形图和概率公式,其中根据题意画出树形图是解答本题的关键10、B【分析】运用配方法把一般式化为顶点式即可【详解】解:=故选:B【点睛】本题考查的是二次函数的三种形式,正确运用配方法把一般式化为顶点式是解题的关键11、C【分析】根据折叠的性质PGCPBC90,BPCGPC,从而证明BECG可得BEPG,推出BPFBFP,即可得到BP=BF;利用矩形ABCD的性质得出AE=DE,即可利用条件证明ABEDCE;先根据题意证明ABEDEC,再利用对应边成比例求出DE即可;根据勾股定理和折叠的性质得出ECFGCP,再利用对应边成比例求出BP,即可算出sin值;连接FG,先

16、证明BPGF是菱形,再根据菱形的性质得出GEFEAB,再利用对应边成比例求出BEEF【详解】在矩形ABCD,ABC90,BPC沿PC折叠得到GPC,PGCPBC90,BPCGPC,BECG,BEPG,GPFPFB,BPFBFP,BPBF;故正确;在矩形ABCD中,AD90,ABDC,E是AD中点,AEDE,在ABE和DCE中,ABEDCE(SAS);故正确;当AD25时,BEC90,AEB+CED90,AEB+ABE90,CEDABE,AD90,ABEDEC,设AEx,DE25x,x9或x16,AEDE,AE9,DE16;故正确;由知:CE,BE,由折叠得,BPPG,BPBFPG,BEPG,E

17、CFGCP,设BPBFPGy,y,BP,在RtPBC中,PC,sinPCB;故不正确;如图,连接FG,由知BFPG,BFPGPB,BPGF是菱形,BPGF,FGPB9,GFEABE,GEFEAB,BEEFABGF1291;故正确,所以本题正确的有,4个,故选:C【点睛】本题考查矩形与相似的结合、折叠的性质,关键在于通过基础知识证明出所需结论,重点在于相似对应边成比例12、C【解析】试题解析:如图,弦AB所对的圆周角为C,D,连接OA、OB,因为AB=OA=OB=6,所以,AOB=60,根据圆周角定理知,C=AOB=30,根据圆内接四边形的性质可知,D=180-C=150,所以,弦AB所对的圆周

18、角的度数30或150故选C二、填空题(每题4分,共24分)13、(0,2),(1,0),(,1)【分析】先求出点C的坐标,分为三种情况:圆P与边AO相切时,当圆P与边AB相切时,当圆P与边BO相切时,求出对应的P点即可【详解】点A、B的坐标分别是(0,2)、(4,0),直线AB的解析式为y=-x+2,点P是直线y=2x+2上的一动点,两直线互相垂直,即PAAB,且C(-1,0),当圆P与边AB相切时,PA=PO,PA=PC,即P为AC的中点,P(-,1);当圆P与边AO相切时,POAO,即P点在x轴上,P点与C重合,坐标为(-1,0);当圆P与边BO相切时,POBO,即P点在y轴上,P点与A重

19、合,坐标为(0,2);故符合条件的P点坐标为(0,2),(-1,0),(-,1),故答案为(0,2),(-1,0),(-,1)【点睛】本题主要考查待定系数法确定一次函数关系式,一次函数的应用,及直角三角形的性质,直线与圆的位置关系,可分类3种情况圆与AOB的三边分别相切,根据直线与圆的位置关系可求解点的坐标14、1【解析】设参加聚会的有x名学生,根据“在国庆节的一次同学聚会上,每人都向其他人赠送了一份小礼品,共互送10份小礼品”,列出关于x的一元二次方程,解之即可【详解】解:设参加聚会的有x名学生,根据题意得:,解得:,舍去,即参加聚会的有1名同学,故答案为:1【点睛】本题考查了一元二次方程的

20、应用,正确找出等量关系,列出一元二次方程是解题的关键15、(152x)(92x)1【分析】设剪去的小正方形边长是xcm,则纸盒底面的长为(152x)cm,宽为(92x)cm,根据长方形的面积公式结合纸盒的底面(图中阴影部分)面积是1cm2,即可得出关于x的一元二次方程,此题得解【详解】解:设剪去的小正方形边长是xcm,则纸盒底面的长为(152x)cm,宽为(92x)cm,根据题意得:(152x)(92x)1故答案是:(152x)(92x)1【点睛】此题主要考查一元二次方程的应用,解题的关键是根据题意找到等量关系进行列方程.16、2.5cm【分析】根据圆周角定理得到COB=2CDB=60,然后根

21、据含30度的直角三角形三边的关系求出OE即可【详解】CDAB,OEC90,COB2CDB23060,OEOC52.5,即圆心O到弦CD的距离为2.5cm故答案为2.5cm【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半17、1x1【分析】先求出函数与x轴的另一个交点,再根据图像即可求解.【详解】解:抛物线的对称轴为直线x1,而抛物线与x轴的一个交点坐标为(1,0),抛物线与x轴的另一个交点坐标为(1,0),当1x1时,y0,不等式ax2+bx+c0的解集为1x1故答案为1x1【点睛】此题主要考查二次函数的图像,解题的关键是求出函数与x轴的

22、另一个交点.18、1【分析】由AED=B,A是公共角,根据有两角对应相等的两个三角形相似,即可证得ADEACB,又由相似三角形面积的比等于相似比的平方,可得,然后由AE=2,ADE的面积为4,四边形BCDE的面积为5,即可求得AB的长【详解】AED=B,A是公共角,ADEACB,ADE的面积为4,四边形BCED的面积为5,ABC的面积为9,AE=2,解得:AB=1故答案为1【点睛】本题考查相似三角形的判定性质,掌握相似三角形的面积比等于相似比的平方是解题的关键.三、解答题(共78分)19、(1)见解析;(2)见解析;(3)见解析.【分析】(1)根据,利用两角分别相等的两个三角形相似即可证得结果

23、;(2)利用相似三角形对应边成比例结合等腰直角三角形的性质可得,,,从而求得结果;(3)根据两角分别相等的两个三角形相似,可证得,求得,由可得,从而证得结论.【详解】(1),又,又,(2)在中,(3)如图,过点作,交、于点,又,即,.即:.【点睛】本题主要考查了等腰直角三角形的性质,相似三角形的判定和性质,综合性较强,有一定的难度.20、(1)不可能;随机;(2)【分析】(1)根据随机事件和不可能事件的概念及概率公式解答可得;(2)列举出所有情况,看所求的情况占总情况的多少即可【详解】(1) 小刚不在班主任决定的名同学(小明、小山、小月、小玉)之中,所以“小刚被抽中”是不可能事件;“小明被抽中

24、”是随机事件,第一次抽取卡片有4种等可能结果,其中小玉被抽中的有1种结果,所以第一次抽取卡片抽中是小玉的概率是;故答案为:不可能、随机、;(2)解:A表示小明,B表示小山,C表示小月,D表示小玉,则画树状图为:共有12种等可能的结果数,其中抽到C有6种,P(抽中小月)=【点睛】本题主要考查了树状图或列表法求概率,列表法可以不重复不遗漏地列出所有可能的结果,适用于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验用到的知识点为:概率=所求情况数与总情况数之比21、(1);(2),;(3)三根钢管的长度之和的最大值是.【分析】(1)根据题意,即可写出点及

25、抛物线顶点的坐标;(2)抛物线过原点,故设抛物线为,将M和P的坐标代入即可求出抛物线的解析式;(3)设,分别用含x的式子表示出的长度,设“脚手架”三根钢管的长度之和为,即可求出与x的函数关系式,最后利用二次函数求最值即可【详解】解:(1)由题意可知:抛物线顶点;(2)抛物线过原点,故设抛物线为,由在抛物线上有,解得,所以抛物线的函数解析式为,由图象可知;(3)设,根据点A在抛物线上和矩形的性质可得,点A和点D关于抛物线的对称轴对称点D的坐标为(60 x,y)设“脚手架”三根钢管的长度之和为,则,即当时,所以,三根钢管的长度之和的最大值是【点睛】此题考查的是二次函数的应用,掌握用待定系数法求二次

26、函数的解析式和利用二次函数求最值是解决此题的关键22、(1)y(x2)2,即yx2x+1;(2)m0时,PH的值最大最大值为2,P(0,2);(3)PCF的巧点有3个,PCF的周长最小时,“巧点”的坐标为(0,1)【解析】(1)设抛物线的解析式为ya(x2)2,将点B的坐标代入求得a的值即可;(2)求出直线CF的解析式,求出点P、H的坐标,构建二次函数即可解决问题;(3)据三角形的面积公式求得点P到CF的距离,过点C作CGCF,取CG则点G的坐标为(1,2)或(1,4),过点G作GHFC,设GH的解析式为yx+b,将点G的坐标代入求得直线GH的解析式,将直线GH的解析式与抛物线的解析式,联立可

27、得到点P的坐标,当PC+PF最小时,PCF的周长最小,由PFPM1可得到PC+PFPC+PM+1,故此当C、P、M在一条直线上时,PCF的周长最小,然后可求得此时点P的坐标;【详解】解:(1)设抛物线的解析式为ya(x2)2,将点B的坐标代入得:4a1,解得a,抛物线的解析式为y(x2)2,即yx2x+1(2)设CF的解析式为ykx+3,将点F的坐标F(2,1)代入得:2k+31,解得k1,直线CF的解析式为yx+3,由题意P(m,m2m+1),H(m,m+3),PHm2+2,m0时,PH的值最大最大值为2,此时P(0,2)(3)由两点间的距离公式可知:CF2设PCF中,边CF的上的高线长为x

28、则2x2,解得x过点C作CGCF,取CG则点G的坐标为(1,2)过点G作GHFC,设GH的解析式为yx+b,将点G的坐标代入得:1+b2,解得b1,直线GH的解析式为yx+1,与 y(x2)2联立 解得:,所以PCF的一个巧点的坐标为(0,1)显然,直线GH在CF的另一侧时,直线GH与抛物线有两个交点FC为定点,CF的长度不变,当PC+PF最小时,PCF的周长最小PFPM1,PC+PFPC+PM+1,当C、P、M在一条直线上时,PCF的周长最小此时P(0,1)综上所述,PCF的巧点有3个,PCF的周长最小时,“巧点”的坐标为(0,1)【点睛】本题主要考查的是二次函数的综合应用,解答本题主要应用

29、了待定系数法求二次函数的解析式、两点间的距离公式、垂线段最短等知识,解题的关键是熟练掌握待定系数法确定函数解析式,学会构建二次函数解决最值问题,学会构建一次函数,利用方程组确定交点坐标,属于中考压轴题23、(1);(2)当时,有最大值,最大值为,点坐标为;(3)点的坐标或.【分析】(1)利用点B的坐标,用待定系数法即可求出抛物线的函数表达式;(2)如图1,过点P作轴,交BC于点H,设,H ,求出的面积即可求解;(3)如图2,作ANBC于N,NHx轴于H,作AC的垂直平分线交BC于,交AC于E,利用等腰三角形的性质和三角形外角性质得到,再确定N(3,2),AC的解析式为y5x5,E点坐标为,利用

30、两直线垂直的问题可设直线的解析式为,把E代入求出b,得到直线的解析式为 ,则解方程组 得点的坐标;作点关于N点的对称点,利用对称性得到,设,根据中点坐标公式得到,然后求出x即可得到的坐标,从而得到满足条件的点M的坐标【详解】(1)把代入得;(2)过点P作轴,交BC于点H,设,则点H的坐标为 , , 当时,有最大值,最大值为,此时点坐标为.(3)作ANBC于N,NHx轴于H,作AC的垂直平分线交BC于,交AC于E,ANB为等腰直角三角形,N(3,2),由 可得AC的解析式为y5x5,E点坐标为,设直线的解析式为,把E代入得 ,解得,直线的解析式为,解方程组得 ,则;如图2,在直线BC上作点关于N点的对称点,则,设,综上所述,点M的坐标为或.【点睛】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质、会利用待定系数法求函数解析式,会运用分类讨论的思想解决数学问题24、(1)y4x114x+144;(1)111mm1【分析】(1)用x表示PB和BQ利用两个直角三角形的面积差求得答案

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论