2023学年山东省新泰市新甫中学数学九年级第一学期期末联考模拟试题含解析_第1页
2023学年山东省新泰市新甫中学数学九年级第一学期期末联考模拟试题含解析_第2页
2023学年山东省新泰市新甫中学数学九年级第一学期期末联考模拟试题含解析_第3页
2023学年山东省新泰市新甫中学数学九年级第一学期期末联考模拟试题含解析_第4页
2023学年山东省新泰市新甫中学数学九年级第一学期期末联考模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2023学年九上数学期末模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(每小题3分,共30分)1抛物线的对称轴是()ABCD2若关于的方程是一元二次方程,则

2、的取值范围是( )ABCD3二次函数部分图象如图所示,有以下结论:;,其中正确的是( )ABCD4如图,是的内切圆,切点分别是、,连接,若,则的度数是()ABCD5已知关于x的二次方程有两个实数根,则k的取值范围是( )AB且CD且6如图,在平行四边形ABCD中,E是DC上的点,DE:EC=3:2,连接AE交BD于点F,则DEF与BAF的面积之比为()A2:5B3:5C9:25D4:257已知锐角,且sin=cos38,则=()A38B62C52D728如图,抛物线与轴交于点,其对称轴为直线,结合图象分析下列结论: ; ; 0; 当时,随的增大而增大; (m为实数),其中正确的结论有( )A2

3、个B3个C4个D5个9如图所示,已知ABC中,BC=12,BC边上的高h=6,D为BC上一点,EFBC,交AB于点E,交AC于点F,设点E到边BC的距离为x则DEF的面积y关于x的函数图象大致为()ABCD10下列两个图形:两个等腰三角形;两个直角三角形;两个正方形;两个矩形;两个菱形;两个正五边形其中一定相似的有()A2组B3组C4组D5组二、填空题(每小题3分,共24分)11抛物线y=(x2)23的顶点坐标是_12一男生推铅球,铅球行进高度y与水平距离x之间的关系是,则铅球推出的距离是_此时铅球行进高度是_13一组正方形按如图所示的方式放置,其中顶点在轴上,顶点,在轴上,已知正方形的边长为

4、,则正方形的边长为_14如图,直线与双曲线交于点,点是直线上一动点,且点在第二象限连接并延长交双曲线与点过点作轴,垂足为点过点作轴,垂足为,若点的坐标为,点的坐标为,设的面积为的面积为,当时,点的横坐标的取值范围为_15如图,在平面直角坐标系中,将边长为1的正方形绕点逆时针旋转45后得到正方形,继续旋转至2020次得到正方形,那点的坐标是_16如图,在平面直角坐标系中,正方形OABC的两边OA、OC分别在x轴、y轴上,点D(4,1)在AB边上,把CDB绕点C旋转90,点D的对应点为点D,则OD的长为_17如图,中,边上的高长为作的中位线,交于点;作的中位线,交于点;顺次这样做下去,得到点,则_

5、18若把一根长200cm的铁丝分成两部分,分别围成两个正方形,则这两个正方形的面积的和最小值为_三、解答题(共66分)19(10分)下表是某地连续5天的天气情况(单位:):日期1月1日1月2日1月3日1月4日1月5日最高气温57684最低气温20213(1)1月1日当天的日温差为_(2)利用方差判断该地这5天的日最高气温波动大还是日最低气温波动大.20(6分)如图,已知抛物线yax2+bx+c过点A(3,0),B(2,3),C(0,3),顶点为D(1)求抛物线的解析式;(2)设点M(1,m),当MB+MD的值最小时,求m的值;(3)若P是抛物线上位于直线AC上方的一个动点,求APC的面积的最大

6、值21(6分)计算:解方程:22(8分)在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用32m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设ABxm()若花园的面积是252m2,求AB的长;()当AB的长是多少时,花园面积最大?最大面积是多少?23(8分)某公司投入研发费用80万元(80万元只计入第一年成本),成功研发出一种产品公司按订单生产(产量=销售量),第一年该产品正式投产后,生产成本为6元/件此产品年销售量y(万件)与售价x(元/件)之间满足函数关系式y=x+1(1)求这种产品第一年的利润W1(万元)与售价x(元/件)满足的函数关系式;(2)该产

7、品第一年的利润为20万元,那么该产品第一年的售价是多少?(3)第二年,该公司将第一年的利润20万元(20万元只计入第二年成本)再次投入研发,使产品的生产成本降为5元/件为保持市场占有率,公司规定第二年产品售价不超过第一年的售价,另外受产能限制,销售量无法超过12万件请计算该公司第二年的利润W2至少为多少万元24(8分)如图,在矩形中,为边上一点,把沿直线折叠,顶点折叠到,连接与交于点,连接与交于点,若(1)求证:;(2)当时,求的长;(3)连接,直接写出四边形的形状: 当时,并求的值25(10分)正比例函数y2x与反比例函数y的图象有一个交点的纵坐标为1(1)求m的值;(2)请结合图象求关于x

8、的不等式2x的解集26(10分)某市“艺术节”期间,小明、小亮都想去观看茶艺表演,但是只有一张茶艺表演门票,他们决定采用抽卡片的办法确定谁去规则如下:将正面分别标有数字1、2、3、4的四张卡片(除数字外其余都相同)洗匀后,背面朝上放置在桌面上,随机抽出一张记下数字后放回;重新洗匀后背面朝上放置在桌面上,再随机抽出一张记下数字如果两个数字之和为奇数,则小明去;如果两个数字之和为偶数,则小亮去(1)请用列表或画树状图的方法表示抽出的两张卡片上的数字之和的所有可能出现的结果;(2)你认为这个规则公平吗?请说明理由参考答案一、选择题(每小题3分,共30分)1、D【解析】根据二次函数的对称轴公式计算即可

9、,其中a为二次项系数,b为一次项系数【详解】由二次函数的对称轴公式得:故选:D【点睛】本题考查了二次函数的对称轴公式,熟记公式是解题关键2、A【解析】要使方程为一元二次方程,则二次项系数不能为0,所以令二次项系数不为0即可【详解】解:由题知:m+10,则m-1,故选:A【点睛】本题主要考查的是一元二次方程的性质,二次项系数不为0,掌握这个知识点是解题的关键3、A【分析】根据二次函数的性质,结合图中信息,一一判断即可解决问题【详解】由图象可知,a0,b0,c0,正确;图像与x轴有两个交点,正确;对称轴x=,故正确;故选A.【点睛】本题考查二次函数图象与系数的关系,解题的关键是灵活应用图中信息解决

10、问题,属于中考常考题型4、C【分析】由已知中A100,C30,根据三角形内角和定理,可得B的大小,结合切线的性质,可得DOE的度数,再由圆周角定理即可得到DFE的度数【详解】解:B180AC1801003050BDOBEO180B、D、O、E四点共圆DOE180B18050130又DFE是圆周角,DOE是圆心角DFEDOE65故选:C【点睛】本题考查的知识点是圆周角定理,切线的性质,其中根据切线的性质判断出B、D、O、E四点共圆,进而求出DOE的度数是解答本题的关键5、B【分析】根据一元二次方程根的判别式让=b24ac1,且二次项的系数不为1保证此方程为一元二次方程【详解】解:由题意得:且,解

11、得:且,故选:B【点睛】本题考查了一元二次方程根的判别式,方程有2个实数根应注意两种情况:1,二次项的系数不为16、C【分析】由平行四边形的性质得出CDAB,进而得出DEFBAF,再利用相似三角形的性质可得出结果.【详解】四边形ABCD为平行四边形,CDAB,DEFBAFDE:EC=3:2,故选C【点睛】本题考查了相似三角形的性质与判定及平行四边形的性质,解题的关键是掌握相似三角形的面积比等于相似比的平方.7、C【分析】根据一个角的正弦值等于它的余角的余弦值求解即可【详解】sin=cos38,=90-38=52故选C.【点睛】本题考查了锐角三角函数的性质,掌握正余弦的转换方法:一个角的正弦值等

12、于它的余角的余弦值8、B【分析】根据题意和函数图象中的数据,利用二次函数的性质可以判断各个小题中的结论是否正确,从而可以解答本题【详解】抛物线y=ax2+bx+c(a0)与x轴交于点(-3,0),其对称轴为直线,抛物线y=ax2+bx+c(a0)与x轴交于点(-3,0)和(2,0),且=,a=b,由图象知:a0,b0,故结论正确;抛物线y=ax2+bx+c(a0)与x轴交于点(-3,0),9a-3b+c=0,a=b,c=-6a,3a+c=-3a0,故结论正确;当时,y=0,0,故结论错误;当x时,y随x的增大而增大,当x0时,y随x的增大而减小,故结论错误;a=b,可换成,a0,可得-1,即4

13、m2+4m+10(2m+1)20,故结论正确;综上:正确的结论有,故选:B【点睛】本题考查了二次函数图象与系数的关系,二次函数的性质,掌握知识点是解题关键9、D【分析】可过点A向BC作AHBC于点H,所以根据相似三角形的性质可求出EF,进而求出函数关系式,由此即可求出答案【详解】过点A向BC作AHBC于点H,所以根据相似比可知:,即EF=2(6-x)所以y=2(6-x)x=-x2+6x(0 x6)该函数图象是抛物线的一部分,故选D【点睛】此题考查根据几何图形的性质确定函数的图象和函数图象的读图能力要能根据几何图形和图形上的数据分析得出所对应的函数的类型和所需要的条件,结合实际意义画出正确的图象

14、10、A【解析】试题解析:不相似,因为没有指明相等的角或成比例的边;不相似,因为只有一对角相等,不符合相似三角形的判定;相似,因为其四个角均相等,四条边都相等,符合相似的条件;不相似,虽然其四个角均相等,因为没有指明边的情况,不符合相似的条件;不相似,因为菱形的角不一定对应相等,不符合相似的条件;相似,因为两正五边形的角相等,对应边成比例,符合相似的条件;所以正确的有故选A二、填空题(每小题3分,共24分)11、(2,3)【分析】根据:对于抛物线y=a(xh)2+k的顶点坐标是(h,k).【详解】抛物线y=(x2)23的顶点坐标是(2,3).故答案为(2,3)【点睛】本题考核知识点:抛物线的顶

15、点. 解题关键点:熟记求抛物线顶点坐标的公式.12、1 2 【分析】铅球落地时,高度,把实际问题理解为当时,求x的值即可【详解】铅球推出的距离就是当高度时x的值当时,解得:(不合题意,舍去)则铅球推出的距离是1此时铅球行进高度是2故答案为:1;2【点睛】本题考查了二次函数的应用,理解铅球推出的距离就是当高度时x的值是解题关键13、【分析】由正方形的边长为,得D1E1=B2E2,D2E3=B3E4,D1C1E1=C2B2E2=C3B3E4=30,根据三角函数的定义和正方形的性质,即可得到答案【详解】正方形的边长为,D1E1=B2E2,D2E3=B3E4,D1C1E1=C2B2E2=C3B3E4=

16、30,D1E1=C1D1=,B2C2=,同理可得:B3C3= ,以此类推:正方形的边长为:,正方形的边长为:故答案是:【点睛】本题主要考查正方形的性质和三角函数的定义综合,掌握用三角函数的定义解直角三角形,是解题的关键14、-3x-1【分析】根据点A的坐标求出中k,再根据点B在此图象上求出点B的横坐标m,根据结合图象即可得到答案.【详解】A(-1,3)在上,k=-3,B(m,1)在上,m=-3,由图象可知:当时,点P在线段AB上,点P的横坐标x的取值范围是-3x-1,故答案为:-3x-1.【点睛】此题考查一次函数与反比例函数交点问题,反比例函数解析式的求法,正确理解题意是解题的关键.15、(-

17、1,-1)【分析】连接OB,根据图形可知,点B在以点O为圆心、OB为半径的圆上运用,将正方形OABC绕点O逆时针依次旋转45,可得点B的对应点坐标,根据图形及对应点的坐标发现是8次一个循环,进而得出结论【详解】解:如图,四边形OABC是正方形,且OA=1,B(1,1),连接OB,由勾股定理可得 ,由旋转的性质得: 将正方形OABC绕点O逆时针依次旋转45,得:,可发现8次一循环,点的坐标为,故答案为【点睛】本题考查了几何图形的规律探究,根据计算得出“8次一个循环”是解题的关键16、3或【分析】由题意,可分为逆时针旋转和顺时针旋转进行分析,分别求出点OD的长,即可得到答案【详解】解:因为点D(4

18、,1)在边AB上,所以AB=BC=4,BD=4-1=3;(1)若把CDB顺时针旋转90,则点D在x轴上,OD=BD=3,所以D(3,0);(2)若把CDB逆时针旋转90,则点D到x轴的距离为8,到y轴的距离为3,所以D(3,8),;故答案为:3或【点睛】此题主要考查了坐标与图形变化旋转,考查了分类讨论思想的应用,解答此题的关键是要注意分顺时针旋转和逆时针旋转两种情况17、或【分析】根据中位线的性质,得出的关系式,代入即可【详解】根据中位线的性质故我们可得当均成立,故关系式正确故答案为:或【点睛】本题考查了归纳总结的问题,掌握中位线的性质得出的关系式是解题的关键18、1150cm1【分析】设将铁

19、丝分成xcm和(100 x)cm两部分,则两个正方形的边长分别是cm,cm,再列出二次函数,求其最小值即可【详解】如图:设将铁丝分成xcm和(100 x)cm两部分,列二次函数得:y()1+()1(x100)1+1150,由于0,故其最小值为1150cm1,故答案为:1150cm1【点睛】本题考查二次函数的最值问题,解题的关键是根据题意正确列出二次函数三、解答题(共66分)19、(1)7;(2)日最低气温波动大.【分析】(1)根据温差=最高温度-最低温度,再根据有理数的减法进行计算即可得出答案(2)利用方差公式直接求出最高气温与最低气温的方差,再进行比较即可.【详解】解:(1)5-(-2)=5

20、+2=7所以1月1日当天的日温差为7(2)最高气温的平均数:最高气温的方差为:同理得出,最低气温的平均数:最低气温的方差为:日最低气温波动大.【点睛】本题考查的知识点是求数据的平均数与方差,熟记方差公式是解题的关键.20、(1);(2);(3).【分析】将A,B,C点的坐标代入解析式,用待定系数法可得函数解析式;(2)求出顶点D的坐标为,作B点关于直线的对称点,可求出直线的函数关系式为,当在直线上时,的值最小;(3)作轴交AC于E点,求得AC的解析式为,设,得,所以,求函数的最大值即可.【详解】将A,B,C点的坐标代入解析式,得方程组: 解得 抛物线的解析式为配方,得,顶点D的坐标为作B点关于

21、直线的对称点,如图1,则,由得,可求出直线的函数关系式为,当在直线上时,的值最小,则作轴交AC于E点,如图2,AC的解析式为,设,当时,的面积的最大值是;【点睛】本题考核知识点:二次函数综合运用.解题关键点:画出图形,数形结合分析问题,把问题转化为相应函数问题解决.21、(1);(2),【分析】根据三角函数性质和一元二次方程的概念即可解题.【详解】(1)解:原式(2)解: ,【点睛】本题考查了三角函数和一元二次方程的求解,属于简单题,熟悉运算性质是解题关键.22、()13m或19m;()当AB16时,S最大,最大值为:1【分析】()根据题意得出长宽=252列出方程,进一步解方程得出答案即可;(

22、)设花园的面积为S,根据矩形的面积公式得到S=x(28-x)=- 28x=+196,于是得到结果【详解】解:()ABxm,则BC(32x)m,x(32x)252,解得:x113,x219,答:x的值为13m或19m;()设花园的面积为S,由题意得:Sx(32x)x2+32x(x16)2+1,a10,当x16时,S最大,最大值为:1【点睛】本题主要考查二次函数的应用以及二次函数最值求法,得出S与x的函数关系式是解题关键23、(1)W1=x2+32x2;(2)该产品第一年的售价是16元;(3)该公司第二年的利润W2至少为18万元【解析】(1)根据总利润=每件利润销售量投资成本,列出式子即可;(2)

23、构建方程即可解决问题;(3)根据题意求出自变量的取值范围,再根据二次函数,利用而学会设的性质即可解决问题.【详解】(1)W1=(x6)(x+1)80=x2+32x2(2)由题意:20=x2+32x2解得:x=16,答:该产品第一年的售价是16元(3)由题意:7x16,W2=(x5)(x+1)20=x2+31x150,7x16,x=7时,W2有最小值,最小值=18(万元),答:该公司第二年的利润W2至少为18万元【点睛】本题考查二次函数的应用、一元二次方程的应用等知识,解题的关键是理解题意,学会构建方程或函数解决问题.24、(1)见解析;(2);(3)菱形,24【分析】(1)由题意可得AEB+C

24、ED=90,且ECD+CED=90,可得AEB=ECD,且A=D=90,则可证ABEDEC;(2)设AE=x,则DE=13-x,由相似三角形的性质可得,即:,可求x的值,即可得DE=9,根据勾股定理可求CE的长;(3)由折叠的性质可得CP=CP,CQ=CQ,CPQ=CPQ,BCP=BCP=90,由平行线的性质可得CPQ=CQP=CPQ,即可得CQ=CP=CQ=CP,则四边形CQCP是菱形,通过证CEQEDC,可得,即可求CEEQ的值【详解】证明:(1)CEBE,BEC=90,AEB+CED=90,又ECD+CED=90,AEB=ECD,又A=D=90,ABEDEC(2)设AE=x,则DE=13-x,由(1)知:ABEDEC,即:x2-13x+36=0,x1=4,x2=9,又AEDEAE=4,DE=9,在RtCDE中,由勾股定理得:(3)如图,折

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论