2023学年乌海市重点中学九年级数学第一学期期末达标检测试题含解析_第1页
2023学年乌海市重点中学九年级数学第一学期期末达标检测试题含解析_第2页
2023学年乌海市重点中学九年级数学第一学期期末达标检测试题含解析_第3页
2023学年乌海市重点中学九年级数学第一学期期末达标检测试题含解析_第4页
2023学年乌海市重点中学九年级数学第一学期期末达标检测试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2023学年九上数学期末模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1 “线段,等边三角形,圆,矩形,正六边形”这五个图形中,既是轴对称图形又是中心对称图形的个数有( )A5 个 B4 个 C3 个 D2 个2把抛物线向右平移个单位,再向下平移个单位,即得到抛物线( )Ay=-(x+2) 2+3By=-(x-2)

2、 2+3Cy=-(x+2) 2-3Dy=-(x-2) 2-33如图所示,二次函数的图像与轴的一个交点坐标为,则关于的一元二次方程的解为( )ABCD4若,那么的值是( )ABCD5如图,滑雪场有一坡角为20的滑雪道,滑雪道AC的长为200米,则滑雪道的坡顶到坡底垂直高度AB的长为( )A200tan20米B米C200sin20米D200cos20米6如图,在正方形ABCD中,G为CD边中点,连接AG并延长,分别交对角线BD于点F,交BC边延长线于点E若FG2,则AE的长度为( )A6B8C10D127如图,ABC的三个顶点分别为A(1,2)、B(4,2)、C(4,4)若反比例函数y在第一象限内

3、的图象与ABC有交点,则k的取值范围是()A1k4B2k8C2k16D8k168方程变为的形式,正确的是( )ABCD9一元二次方程x22x+30的一次项和常数项分别是( )A2和3B2和3C2x和3D2x和310关于x的方程3x22x+1=0的根的情况是( )A有两个相等的实数根 B有两个不相等的实数根C没有实数根 D不能确定11下列图形中是中心对称图形又是轴对称图形的是( )ABCD12下列事件中,是必然事件的是()A打开电视,它正在播广告B抛掷一枚硬币,正面朝上C打雷后会下雨D367人中有至少两人的生日相同二、填空题(每题4分,共24分)13如图,平行四边形分别切于点,连接并延长交于点,

4、连接与刚好平行,若,则的直径为_14在一个不透明的袋子中有1个红球和3个白球,这些球除颜色外都相同,在袋子中再放入个白球后,从袋子中随机摸出1个球,记录下颜色后放回袋子中并搅匀,经大量试验,发现摸到白球的频率稳定在0.95左右,则_.15抛物线的顶点坐标是_.16如图,抛物线y1=a(x+2)2+m过原点,与抛物线y2=(x3)2+n交于点A(1,3),过点A作x轴的平行线,分别交两条抛物线于点B,C下列结论:两条抛物线的对称轴距离为5;x=0时,y2=5;当x3时,y1y20;y轴是线段BC的中垂线正确结论是_(填写正确结论的序号) 17如图,在RtABC中,ABC90,BDAC,垂足为点D

5、,如果BC4,sinDBC,那么线段AB的长是_18如图,在ABCD中,点E在DC边上,若,则的值为_三、解答题(共78分)19(8分)如图,在矩形ABCD中,BD的垂直平分线交AD于E,交BC于F,连接BE 、DF.(1)判断四边形BEDF的形状,并说明理由;(2)若AB=8,AD=16,求BE的长.20(8分)解方程:3x(x1)=22x21(8分)如图,已知抛物线与x轴交于点A、B,与y轴分别交于点C,其中点,点,且.(1)求抛物线的解析式;(2)点P是线段AB上一动点,过P作交BC于D,当面积最大时,求点P的坐标;(3)点M是位于线段BC上方的抛物线上一点,当恰好等于中的某个角时,求点

6、M的坐标.22(10分)如图,AB是O的直径,过O外一点P作O的两条切线PC,PD,切点分别为C,D,连接OP,CD(1)求证:OPCD;(2)连接AD,BC,若DAB50,CBA70,OA2,求OP的长23(10分)在等边三角形ABC中,点D,E分别在BC,AC上,且DC=AE,AD与BE交于点P,连接PC(1)证明:ABECAD(2)若CE=CP,求证CPD=PBD(3)在(2)的条件下,证明:点D是BC的黄金分割点.24(10分)某商场经销种高档水果 ,原价每千克元,连续两次降价后每千克元,若每次下降的百分率相同求每次下降的百分率25(12分)如图,在RtABC中,ACB=90,AC=6

7、,BC=8,点D为边CB上的一个动点(点D不与点B重合),过D作DOAB,垂足为O,点B在边AB上,且与点B关于直线DO对称,连接DB,AD(1)求证:DOBACB;(2)若AD平分CAB,求线段BD的长;(3)当ABD为等腰三角形时,求线段BD的长26如图,一次函数y=kx+b(k0)与反比例函数y=(m0)的图象有公共点A(1,a)、D(2,1)直线l与x轴垂直于点N(3,0),与一次函数和反比例函数的图象分别交于点B、C(1)求一次函数与反比例函数的解析式;(2)根据图象回答,x在什么范围内,一次函数的值大于反比例函数的值;(3)求ABC的面积参考答案一、选择题(每题4分,共48分)1、

8、B【解析】根据轴对称图形与中心对称图形的概念结合线段、等边三角形、圆、矩形、正六边形的性质求解【详解】在线段、等边三角形、圆、矩形、正六边形这五个图形中,既是中心对称图形又是轴对称图形的有线段、圆、矩形、正六边形,共4个.故答案为:B.【点睛】本题考查的知识点是中心对称图形与轴对称图形的概念,解题关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180后原图形重合2、D【分析】根据二次函数图象左加右减,上加下减的平移规律进行解答即可.【详解】抛物线向右平移个单位,得:,再向下平移个单位,得:.故选:.【点睛】本题主要考查的是函数图象的平移,用平移规律“左加右减,上

9、加下减”直接代入函数解析式求得平移后的函数解析式.3、B【分析】先确定抛物线的对称轴,然后根据抛物线的对称性确定图象与x轴的另一个交点,再根据二次函数与一元二次方程的关系解答即可【详解】解:二次函数的对称轴是直线,图象与轴的一个交点坐标为,图象与轴的另一个交点坐标为(1,0),一元二次方程的解为故选:B【点睛】本题考查了二次函数的图象与性质以及二次函数与一元二次方程的关系,属于常考题型,熟练掌握基本知识是解题的关键4、A【分析】根据,可设a2k,则b3k,代入所求的式子即可求解【详解】,设a2k,则b3k,则原式=故选:A【点睛】本题考查了比例的性质,根据,正确设出未知数是本题的关键5、C【解

10、析】解:sinC=,AB=ACsinC=200sin20故选C6、D【解析】根据正方形的性质可得出ABCD,进而可得出ABFGDF,根据相似三角形的性质可得出=2,结合FG=2可求出AF、AG的长度,由ADBC,DG=CG,可得出AG=GE,即可求出AE=2AG=1【详解】解:四边形ABCD为正方形,AB=CD,ABCD, ABF=GDF,BAF=DGF,ABFGDF,=2,AF=2GF=4,AG=2ADBC,DG=CG,=1,AG=GEAE=2AG=1故选:D【点睛】本题考查了相似三角形的判定与性质、正方形的性质,利用相似三角形的性质求出AF的长度是解题的关键7、C【解析】试题解析:由于AB

11、C是直角三角形,所以当反比例函数经过点A时k最小,进过点C时k最大,据此可得出结论ABC是直角三角形,当反比例函数经过点A时k最小,经过点C时k最大,k最小=12=2,k最大=44=1,2k1故选C8、B【分析】方程常数项移到右边,两边加上1变形即可得到结果【详解】方程移项得:x22x=3,配方得:x22x+1=1,即(x1)2=1故选B【点睛】本题考查了解一元二次方程配方法,熟练掌握配方法的步骤是解答本题的关键9、C【分析】根据一元二次方程一次项和常数项的概念即可得出答案【详解】一元二次方程x22x+30的一次项是2x,常数项是3故选:C【点睛】本题主要考查一元二次方程的一次项与常数项,注意

12、在求一元二次方程的二次项,一次项,常数项时,需要先把一元二次方程化成一般形式10、C【解析】试题分析:先求一元二次方程的判别式,由与0的大小关系来判断方程根的情况解:a=3,b=2,c=1,=b24ac=412=80,关于x的方程3x22x+1=0没有实数根故选:C考点:根的判别式11、A【分析】根据中心对称图形和轴对称图形的性质对各项进行判断即可【详解】根据中心对称图形和轴对称图形的性质,只有下图符合故答案为:A【点睛】本题考查了中心对称图形和轴对称图形,掌握中心对称图形和轴对称图形的定义和性质是解题的关键12、D【解析】分析:必然事件指在一定条件下一定发生的事件,据此解答即可.详解:A.

13、打开电视,它正在播广告是随机事件; B. 抛掷一枚硬币,正面朝上是随机事件;C. 打雷后下雨是随机事件; D. 一年有365天, 367 人中有至少两个人的生日相同是必然事件.故选D.点睛:本题考查了必然事件的定义,解决本题需要正确理解必然事件、不可能事件、随机事件的概念必然事件指在一定条件下一定发生的事件不可能事件是指在一定条件下,一定不发生的事件不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件二、填空题(每题4分,共24分)13、【分析】先证得四边形AGCH是平行四边形,则,再证得,求得 ,证得DOHC,根据,即可求得半径,从而求得结论【详解】四边形ABCD是平行四边形,A

14、DBC,AGHC,四边形AGCH是平行四边形,是O的切线,且切点为、,GCH=HCD,ADBC,DHC=GCH,DHC=HCD,三角形DHC为等腰三角形,连接OD、OE,如图,是O的切线,且切点为、,DO是FDE的平分线,又,DOHC,DOC=90,切O于,OECD,OCE+COE=90,DOE+COE=90,OCE=DOE,即,O的直径为:故答案为:【点睛】本题考查了平行四边形的判定和性质,切线长定理,相似三角形的判定和性质,等腰三角形的判定和性质,证得为等腰三角形是解题的关键14、1【分析】根据用频率估计概率即可求出摸到白球的概率,然后利用概率公式列出方程即可求出x的值【详解】解:经大量试

15、验,发现摸到白球的频率稳定在0.95左右摸到白球的概率为0.95解得:1经检验:1是原方程的解故答案为:1【点睛】此题考查的是用频率估计概率和根据概率求数量问题,掌握概率公式是解决此题的关键15、 (1,3)【分析】根据顶点式:的顶点坐标为(h,k)即可求出顶点坐标.【详解】解:由顶点式可知:的顶点坐标为:(1,3).故答案为(1,3).【点睛】此题考查的是求顶点坐标,掌握顶点式:的顶点坐标为(h,k)是解决此题的关键.16、【分析】根据题意分别求出两个二次函数的解析式,根据函数的对称轴判定;令x=0,求出y2的值,比较判定;观察图象,判定;令y=3,求出A、B、C的横坐标,然后求出AB、AC

16、的长,判定【详解】抛物线y1=a(x+2)2+m与抛物线y2=(x3)2+n的对称轴分别为x=-2,x=3,两条抛物线的对称轴距离为5,故正确;抛物线y2=(x3)2+n交于点A(1,3),2+n=3,即n=1;y2=(x3)2+1,把x=0代入y2=(x3)2+1得,y=5,错误;由图象可知,当x3时,y1y2,x3时,y1y20,正确;抛物线y1=a(x+2)2+m过原点和点A(1,3),解得 ,.令y1=3,则,解得x1=-5,x2=1,AB=1-(-5)=6,A(1,3),B(-5,3);令y2=3,则(x3)2+1=3,解得x1=5,x2=1,C(5,3),AC=5-1=4,BC=1

17、0,y轴是线段BC的中垂线,故正确故答案为【点睛】本题考查了二次函数的性质,主要利用了待定系数法求二次函数解析式,已知函数值求自变量的值17、2【分析】在中,根据直角三角形的边角关系求出CD,根据勾股定理求出BD,在在中,再求出AB即可【详解】解:在RtBDC中,BC4,sinDBC,ABC90,BDAC,ADBC,在RtABD中,故答案为:2【点睛】考查直角三角形的边角关系,勾股定理等知识,在不同的直角三角形中利用合适的边角关系式正确解答的关键18、【分析】由DE、EC的比例关系式,可求出EC、DC的比例关系;由于平行四边形的对边相等,即可得出EC、AB的比例关系,易证得,可根据相似三角形的

18、对应边成比例求出BF、EF的比例关系【详解】解:,;四边形ABCD是平行四边形,;, 故答案为:【点睛】此题主要考查了平行四边形的性质以及相似三角形的判定和性质灵活利用相似三角形性质转化线段比是解题关键三、解答题(共78分)19、(1)四边形BEDF是菱形,理由见解析;(2)BE的长为10.【分析】(1)如图,由垂直平分线的性质可得,再由等边对等角和平行线的性质得,根据三线合一的性质可知是等腰三角形,且,从而得出四边形BEDF是菱形;(2)设,由题(1)的结论可得DE的长,从而可得AE的长,在中利用勾股定理即可得.【详解】(1)四边形BEDF是菱形,理由如下:是BD的垂直平分线四边形ABCD是

19、矩形,即BD是的角平分线是等腰三角形,且四边形BEDF是菱形;(2)设,由(1)可得则又四边形ABCD是矩形在中,即,解得所以BE的长为10.【点睛】本题考查了角平分线的性质、等腰三角形的性质、菱形的定义、勾股定理,掌握灵活运用这些性质和定理是解题关键.20、x1=1,x2=【解析】把右边的项移到左边,用提公因式法因式分解求出方程的根【详解】解:3x(x1)+2(x1)=0,(x1)(3x+2)=0,x1=0,3x+2=0,解得x1=1,x2=考点:解一元二次方程-因式分解法;因式分解-提公因式法21、(1);(2)当时,S最大,此时;(3)或【分析】(1)先根据射影定理求出点,设抛物线的解析

20、式为:,将点代入求出,然后化为一般式即可;(2)过点P作y轴的平行线交BC于点E,设,用待定系数法分别求出直线BC,直线AC,直线PD的解析式,表示出点E,点D的坐标,然后根据三角形面积公式列出二次函数解析式,利用二次函数的性质求解即可;(3)分两种情况求解:当时和当时.【详解】(1),.,由射影定理可得:,点,设抛物线的解析式为:,将点代入上式得:,抛物线的解析式为:;(2)过点P作y轴的平行线交BC于点E,设,设,把,代入得,同样的方法可求,故可设,把代入得,联立解得:,故当时,S最大,此时;(3)由题知,当时,点C与点M关于对称轴对称,;当时,过M作于F,过F作y轴的平行线,交x轴于G,

21、交过M平行于x轴的直线于K,BFM=BGF,MFKFGB,同理可证:,设,则,代入,解得,或(舍去),故或.【点睛】本题考查了待定系数法求二次函数、一次函数解析式,二次函数的图像与性质,一次函数图像交点坐标与二元一次方程组解的关系,相似三角形的判定与性质,以及分类讨论的数学思想,难度较大,属中考压轴题.22、(1)详见解析;(2).【分析】(1)方法1、先判断出RtODPRtOCP,得出DOPCOP,即可得出结论;方法2、判断出OP是CD的垂直平分线,即可得出结论;(2)先求出COD60,得出OCD是等边三角形,最后用锐角三角函数即可得出结论.【详解】解:(1)方法1、连接OC,OD,OCOD

22、,PD,PC是O的切线,ODPOCP90,在RtODP和RtOCP中,RtODPRtOCP(HL),DOPCOP,ODOC,OPCD;方法2、PD,PC是O的切线,PDPC,ODOC,P,O在CD的中垂线上,OPCD(2)如图,连接OD,OC,OAODOCOB2,ADODAO50,BCOCBO70,AOD80,BOC40,COD60,ODOC,COD是等边三角形,由(1)知,DOPCOP30,在RtODP中,OP【点睛】本题考查圆周角定理、切线的性质、全等三角形的判定(HL)和性质和锐角三角函数,解题的关键是掌握圆周角定理、切线的性质、全等三角形的判定(HL)和性质和锐角三角函数.23、(1)

23、见解析;(2)见解析;(3)见解析【分析】(1)因为ABC是等边三角形,所以AB=AC,BAE=ACD=60,又AE=CD,即可证明ABECAD;(2)设则由等边对等角可得可得以及,故;(3)可证可得,故由于可得,根据黄金分割点可证点是的黄金分割点;【详解】证明:(1) ABC是等边三角形,AB=AC,BAE=ACD=60,在ABE与CDA中,AB=AC,BAE=ACD=60,AE=CD,AEBCDA;(2)由(1)知,则,设,则,又,;(3)在和中,又,点是的黄金分割点;【点睛】本题主要考查了等边三角形的性质,全等三角形的判定与性质,掌握等边三角形的性质,全等三角形的判定与性质是解题的关键.

24、24、每次下降的百分率为20%【分析】设每次下降的百分率为a,然后根据题意列出一元二次方程,解方程即可【详解】解:设每次下降的百分率为a,根据题意得:50(1a)232解得:a1.8(舍去)或a0.220%,答:每次下降的百分率为20%,【点睛】本题主要考查一元二次方程的应用,读懂题意,列出方程是解题的关键25、(1)证明见试题解析;(2)1;(3)【解析】试题分析:(1)公共角和直角两个角相等,所以相似.(2)由(1)可得三角形相似比,设BDx,CD,BD,BO用x表示出来,所以可得BD长.(3)同(2)原理,BDBDx,AB,BO,BO用x表示,利用等腰三角形求BD长.试题解析:(1)证明:DOAB,DOB90,ACBDOB90,又BBDOBACB(2)AD 平分CAB,DCAC,DOAB,DODC,在 RtABC 中,AC6,BC,8,AB10,DOBACB,DOBOBDACBCAB341,设BDx,则DODCx,BOx,CDBD8,xx8,解得x,1,即:BD1(3)点B 与点B关于直线DO 对称,BOBD

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论