版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2023学年九上数学期末模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1下列图形:(1)等边三角形,(2)矩形,(3)平行四边形,(4)菱形,是中心对称图形的有()个A4B3C2D12如图,在平行四边形ABCD中,点E在DC边上,连接AE,交 BD于点F,若DE:EC2:1,则DEF的面积与BAF的面积之比为( ) A1 :4B4:9C9:4D2:33如图,直线l与x轴,y轴分
2、别交于A,B两点,且与反比例函数y(x0)的图象交于点C,若SAOBSBOC1,则k()A1B2C3D44如图,将一把两边都带有刻度的直尺放在半圆形纸片上,使其一边经过圆心O,另一边所在直线与半圆相交于点D、E,量出半径OC=5cm,弦DE=8cm,则直尺的宽度是( ) A4cmB3cmC2cmD1cm5在平面直角坐标系中,正方形,按如图所示的方式放置,其中点在轴上,点,在轴上,已知正方形的边长为1,则正方形的边长是( )ABCD6如图,已知ABCDEF,它们依次交直线l1、l2于点A、D、F和点B、C、E,如果AD:DF3:1,BE10,那么CE等于( )ABCD7如图,直角ABC 中,以
3、A为圆心,AC 长为半径画四分之一圆,则图中阴影部分的面积是( )ABCD8如图,ABC中,C90,B30,AC,D、E分别在边AC、BC上,CD1,DEAB,将CDE绕点C旋转,旋转后点D、E对应的点分别为D、E,当点E落在线段AD上时,连接BE,此时BE的长为()A2B3C2D39下列图案中,既是轴对称图形又是中心对称图形的是()ABCD10下列运算正确的是()Aaa1aB(2a)36a3Ca6a2a3D2a2a2a211下列图象能表示y是x的函数的是( )ABCD12从一定高度抛一个瓶盖100次,落地后盖面朝下的有55次,则下列说法中错误的是A盖面朝下的频数是55B盖面朝下的频率是0.5
4、5C盖面朝下的概率不一定是0.55D同样的试验做200次,落地后盖面朝下的有110次二、填空题(每题4分,共24分)13如图,在平面直角坐标系中,点在抛物线上运动,过点作轴于点,以为对角线作矩形连结则对角线的最小值为 14已知一元二次方程的两根为、,则_15如图,港口A在观测站O的正东方向,OA=4.某船从港口A出发,沿北偏东15方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60的方向,则该船航行的距离(即AB的长)为_.16若抛物线与轴没有交点,则的取值范围是_17如图,在平面直角坐标系中,菱形OBCD的边OB在x轴正半轴上,反比例函数y(x0)的图象经过该菱形对角线的交点A
5、,且与边BC交于点F若点D的坐标为(3,4),则点F的坐标是_18如图,某景区想在一个长,宽的矩形湖面上种植荷花,为了便于游客观赏,准备沿平行于湖面两边的纵、横方向各修建一座小桥(桥下不种植荷花)已知修建的纵向小桥的宽度是横向小桥宽度的2倍,荷花的种植面积为,如果横向小桥的宽为,那么可列出关于的方程为_(方程不用整理)三、解答题(共78分)19(8分)如图,方格纸中每个小正方形的边长都是单位1,ABC的三个顶点都在格点(即这些小正方形的顶点)上,且它们的坐标分别是A(2,3),B(5,1),C(1,3),结合所给的平面直角坐标系,解答下列问题:(1)请在如图坐标系中画出ABC;(2)画出ABC
6、关于y轴对称的ABC,并写出ABC各顶点坐标。20(8分)解方程:x2+4x3121(8分)如图,在平面直角坐标系xOy中,直线和抛物线W交于A,B两点,其中点A是抛物线W的顶点当点A在直线上运动时,抛物线W随点A作平移运动在抛物线平移的过程中,线段AB的长度保持不变应用上面的结论,解决下列问题:在平面直角坐标系xOy中,已知直线点A是直线上的一个动点,且点A的横坐标为以A为顶点的抛物线与直线的另一个交点为点B(1)当时,求抛物线的解析式和AB的长;(2)当点B到直线OA的距离达到最大时,直接写出此时点A的坐标;(3)过点A作垂直于轴的直线交直线于点C以C为顶点的抛物线与直线的另一个交点为点D
7、当ACBD时,求的值;若以A,B,C,D为顶点构成的图形是凸四边形(各个内角度数都小于180)时,直接写出满足条件的的取值范围22(10分)如图,抛物线交轴于两点,交轴于点,点的坐标为,直线经过点.(1)求抛物线的函数表达式;(2)点是直线上方抛物线上的一动点,求面积的最大值并求出此时点的坐标;(3)过点的直线交直线于点,连接当直线与直线的一个夹角等于的2倍时,请直接写出点的坐标.23(10分)平面直角坐标系xOy中,二次函数y=x22mx+m2+2m+2的图象与x轴有两个交点(1)当m=2时,求二次函数的图象与x轴交点的坐标;(2)过点P(0,m1)作直线1y轴,二次函数图象的顶点A在直线l
8、与x轴之间(不包含点A在直线l上),求m的范围;(3)在(2)的条件下,设二次函数图象的对称轴与直线l相交于点B,求ABO的面积最大时m的值24(10分)在平面直角坐标系中,直线交轴于点,交轴于点,点的坐标是(1)如图1,求直线的解析式;(2)如图2,点在第一象限内,连接,过点作交延长线于点,且,过点作轴于点,连接,设点的横坐标为,的而积为S,求S与的函数关系式(不要求写出自变量的取值范围);(3)如图3,在(2)的条件下,过点作轴,连接、,若,时,求的值25(12分)如图,ABC中,A=30,B=45,AC=4,求AB的长.26山西物产丰富,在历史传承与现代科技进步中,特色农林牧业、农产品加
9、工业、传统手工业不断发展革新,富有地域特色和品牌的士特产品愈加丰富.根据市场调查,下面五种特产比较受人们的青睐:山西汾酒、山西老陈醋、晋中平遥牛肉、山西沁州黄小米、运城芮城麻片,某学校老师带领学生在集市上随机调查了部分市民对“我最喜爱的特产”进行投票,将票数进行统计.绘制了如图所示的条形统计图和扇形统计图(均不完整). 请根据图中的信息解答下列问题.直接写出参与投票的人数,并补全条形统计图;若该集市上共有人,请估计该集市喜爱运城芮城麻片的人数;若要从这五种特产中随机抽取出两种特产,请用画树状图或列表的方法,求正好抽到山西汾酒和晋中平遥牛肉的概率.参考答案一、选择题(每题4分,共48分)1、B【
10、解析】根据中心对称图形的概念判断即可【详解】矩形,平行四边形,菱形是中心对称图形,等边三角形不是中心对称图形故选B【点睛】本题考查了中心对称图形的概念,判断中心对称图形的关键是要寻找对称中心,旋转180度后两部分重合2、B【分析】先判断DEFBAF,根据相似三角形的面积比等于相似比的平方计算即可.【详解】解:四边形ABCD是平行四边形,DCAB,DC=AB,DEFBAF,.又DE:EC2:1,.故选B.【点睛】本题考查平行四边形的性质、相似三角形的判定和性质,熟练掌握相似三角形的判定和性质是解题的关键.3、D【分析】作CDx轴于D,设OB=a(a0)由SAOB=SBOC,根据三角形的面积公式得
11、出AB=BC根据相似三角形性质即可表示出点C的坐标,把点C坐标代入反比例函数即可求得k【详解】如图,作CDx轴于D,设OBa(a0)SAOBSBOC,ABBCAOB的面积为1,OAOB1,OA,CDOB,ABBC,ODOA,CD2OB2a,C(,2a),反比例函数y(x0)的图象经过点C,k2a1故选D【点睛】此题考查反比例函数与一次函数的交点问题,待定系数法求函数解析式,会运用相似求线段长度是解题的关键4、B【分析】过点O作OMDE于点M,连接OD,根据垂径定理“垂直于弦的直径平分弦,并且平分弦所对的两条弧”和勾股定理进行计算,即可求出答案.【详解】过点O作OMDE于点M,连接OD.DE=1
12、2DE=8cm,DM=4cm,在RtODM中,OD=OC=5cm,OM=直尺的宽度为3cm.故答案选B.【点睛】本题主要考查了垂径定理和勾股定理,灵活运用这些定理是解答本题的关键.5、D【分析】利用正方形的性质结合锐角三角函数关系得出正方形边长,进而即可找到规律得出答案【详解】正方形的边长为1, 同理可得故正方形的边长为故选:D【点睛】本题主要考查正方形的性质和锐角三角函数,利用正方形的性质和锐角三角函数找出规律是解题的关键6、C【分析】根据平行线分线段成比例定理得到,得到BC=3CE,然后利用BC+CE=BE=10可计算出CE的长,即可【详解】解:ABCDEF,BC=3CE,BC+CE=BE
13、,3CE+CE=10,CE=故选C【点睛】本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例.7、A【分析】连结AD根据图中阴影部分的面积=三角形ABC的面积-三角形ACD的面积-扇形ADE的面积,列出算式即可求解【详解】解:连结AD直角ABC中,A=90,B=30,AC=4,C=60,AB=4,AD=AC,三角形ACD是等边三角形,CAD=60,DAE=30,图中阴影部分的面积=442-422-=4-故选A【点睛】本题考查了扇形面积的计算,解题的关键是将不规则图形的面积计算转化为规则图形的面积计算8、B【分析】如图,作CHBE于H,设AC交BE于O首先证明CEBD60,
14、解直角三角形求出HE,BH即可解决问题【详解】解:如图,作CHBE于H,设AC交BE于OACB90,ABC30,CAB60,DEAB,CDECABD60,ACBDCE,ACDBCE,ACDBCE,DCEBCAB,在RtACB中,ACB90,AC,ABC30,AB2AC2,BCAC,DEAB,CE,CHE90,CEHCAB60,CECEEHCE,CHHE,BHBEHE+BH3,故选:B【点睛】本题考查了相似三角形的综合应用题,涉及了旋转的性质、平行线分线段成比例、相似三角形的性质与判定等知识点,解题的关键是灵活运用上述知识点进行推理求导9、B【解析】根据轴对称图形与中心对称图形的概念求解【详解】
15、A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,也是中心对称图形,故此选项正确;C、不是轴对称图形,是中心对称图形,故此选项错误;D、不是轴对称图形,是中心对称图形,故此选项错误故选B【点睛】考查了中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合10、D【分析】根据同底数幂的乘法法则,积的乘方运算法则,同底数幂的除法法则以及合并同类项法则逐一判断即可【详解】Aaa1a2,故本选项不合题意;B(2a)38a3,故本选项不合题意;Ca6a2a4,故本选项不合题意;D.2a2a2a2,正确,
16、故本选项符合题意故选:D【点睛】本题考查的是幂的运算,比较简单,需要牢记幂的运算公式.11、D【解析】根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可确定答案【详解】A如图,对于该x的值,有两个y值与之对应,不是函数图象;B如图,对于该x的值,有两个y值与之对应,不是函数图象;C如图,对于该x的值,有两个y值与之对应,不是函数图象;D对每一个x的值,都有唯一确定的y值与之对应,是函数图象故选:D【点睛】本题考查了函数的定义函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量12、D【分析】
17、根据频数,频率及用频率估计概率即可得到答案【详解】A、盖面朝下的频数是55,此项正确;B、盖面朝下的频率是=0.55,此项正确;C、盖面朝下的概率接近于0.55,但不一定是0.55,此项正确;D、同样的试验做200次,落地后盖面朝下的在110次附近,不一定必须有110次,此项错误;故选:D【点睛】本题考查了频数,频率及用频率估计概率,掌握知识点是解题关键二、填空题(每题4分,共24分)13、1【分析】先利用配方法得到抛物线的顶点坐标为(1,1),再根据矩形的性质得BD=AC,由于AC的长等于点A的纵坐标,所以当点A在抛物线的顶点时,点A到x轴的距离最小,最小值为1,从而得到BD的最小值【详解】
18、y=x2-2x+2=(x-1)2+1,抛物线的顶点坐标为(1,1),四边形ABCD为矩形,BD=AC,而ACx轴,AC的长等于点A的纵坐标,当点A在抛物线的顶点时,点A到x轴的距离最小,最小值为1,对角线BD的最小值为1故答案为114、1【分析】根据根与系数的关系得到x1+x2=-3,x1x2=-4,再利用完全平方公式变形得到x12+x1x2+x22=(x1+x2)2-x1x2,然后利用整体代入的方法计算【详解】根据题意得x1+x2=-3,x1x2=-4,所以x12+x1x2+x22=(x1+x2)2-x1x2=(-3)2-(-4)=1故答案为1【点睛】本题考查了根与系数的关系:若x1,x2是
19、一元二次方程ax2+bx+c=0(a0)的两根时,x1+x2=-,x1x2=15、1【解析】过点A作ADOB于D先解RtAOD,得出AD=OA=1,再由ABD是等腰直角三角形,得出BD=AD=1,则AB=AD=1【详解】如图,过点A作ADOB于D在RtAOD中,ADO=90,AOD=30,OA=4,AD=OA=1在RtABD中,ADB=90,B=CAB-AOB=75-30=45,BD=AD=1,AB=AD=1即该船航行的距离(即AB的长)为1故答案为1【点睛】本题考查了解直角三角形的应用-方向角问题,难度适中,作出辅助线构造直角三角形是解题的关键16、;【分析】利用根的判别式0列不等式求解即可
20、【详解】解:抛物线与轴没有交点,即,解得:;故答案为:.【点睛】本题考查了抛物线与x轴的交点问题,利用根的判别式列出不等式是解题的关键17、(6,)【分析】过点D作DMOB,垂足为M,先根据勾股定理求出菱形的边长,即可得到点B、D的坐标,进而可根据菱形的性质求得点A的坐标,进一步即可求出反比例函数的解析式,再利用待定系数法求出直线BC的解析式,然后解由直线BC和反比例函数的解析式组成的方程组即可求出答案.【详解】解:过点D作DMOB,垂足为M,D(3,4),OM3,DM4,OD5,四边形OBCD是菱形,OBBCCDOD5,B(5,0),C(8,4),A是菱形OBCD的对角线交点,A(4,2),
21、代入y,得:k8,反比例函数的关系式为:y,设直线BC的关系式为ykx+b,将B(5,0),C(8,4)代入得:,解得:k,b,直线BC的关系式为yx,将反比例函数与直线BC联立方程组得:,解得:,(舍去),F(6,),故答案为:(6,)【点睛】本题考查了菱形的性质、勾股定理、待定系数法求函数的解析式以及求两个函数的交点等知识,属于常考题型,正确作出辅助线、熟练掌握上述知识是解题的关键.18、【分析】横向小桥的宽为,则纵向小桥的宽为,根据荷花的种植面积列出一元二次方程.【详解】解:设横向小桥的宽为,则纵向小桥的宽为根据题意,【点睛】本题关键是在图中,将小桥平移到长方形最边侧,将荷花池整合在一起
22、计算.三、解答题(共78分)19、(1)图见解析;(2)图见解析;A(-2,-3),B(-5,-1),C(-1,3)【分析】(1)在坐标系内描出各点,顺次连接各点即可;(2)分别作出各点关于y轴的对称点,再顺次连接,并写出各点坐标即可;【详解】(1)如图,ABC为所求;(2)如图,ABC为所求;A(-2,-3),B(-5,-1),C(-1,3)【点睛】本题考查的是作图轴对称变换,熟知轴对称的性质是解答此题的关键20、x12+, x22【分析】根据配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方;解方程即可【详解】解:原式可化
23、为x2+4x+471即(x+2)27,开方得,x+2,x12+;x22【点睛】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数21、(1);(2);(3);的取值范围是或【分析】(1)根据t=3时,A的坐标可以求得是(3,-2),利用待定系数法即可求得抛物线的解析式,则B的坐标可以求得;(2)OAB的面积一定,当OA最小时,B到OA的距离即OAB中OA边上的高最大,此时OAAB,据此即可求解;(3)方法一:设AC,BD交于点E,直线l1:y=x-2,与x轴、y轴交于点P和Q(如图1)由点D在抛物线C
24、2:y=x-(2t-4)2+(t-2)上,可得 =(t-1)-(2t-4)2+(t-2),解方程即可得到t的值;方法二:设直线l1:y=x-2与x轴交于点P,过点A作y轴的平行线,过点B作x轴的平行线,交于点N(如图2),根据BDAC,可得t-1=2t-,解方程即可得到t的值;设直线l1与l2交于点M随着点A从左向右运动,从点D与点M重合,到点B与点M重合的过程中,可得满足条件的t的取值范围【详解】解:(1)点A在直线l1:y=x-2上,且点A的横坐标为3,点A的坐标为(3,-2),抛物线C1的解析式为y=-x2-2,点B在直线l1:y=x-2上,设点B的坐标为(x,x-2)点B在抛物线C1:
25、y=-x2-2上,x-2=-x2-2,解得x=3或x=-1点A与点B不重合,点B的坐标为(-1,-3),由勾股定理得AB=(2)当OAAB时,点B到直线OA的距离达到最大,则OA的解析式是y=-x,则,解得: ,则点A的坐标为(1,-1)(3)方法一:设,交于点,直线,与轴、轴交于点和(如图1)则点和点的坐标分别为,轴,轴,点在直线上,且点的横坐标为,点的坐标为点的坐标为轴,点的纵坐标为点在直线上,点的坐标为抛物线的解析式为,点的横坐标为,点在直线上,点的坐标为点在抛物线上,解得或当时,点与点重合,方法二:设直线l1:y=x-2与x轴交于点P,过点A作y轴的平行线,过点B作x轴的平行线,交于点
26、N(如图2)则ANB=93,ABN=OPB在ABN中,BN=ABcosABN,AN=ABsinABN在抛物线C1随顶点A平移的过程中,AB的长度不变,ABN的大小不变,BN和AN的长度也不变,即点A与点B的横坐标的差以及纵坐标的差都保持不变同理,点C与点D的横坐标的差以及纵坐标的差也保持不变由(1)知当点A的坐标为(3,-2)时,点B的坐标为(-1,-3),当点A的坐标为(t,t-2)时,点B的坐标为(t-1,t-3)ACx轴,点C的纵坐标为t-2点C在直线l2:yx上,点C的坐标为(2t-4,t-2)令t=2,则点C的坐标为(3,3)抛物线C2的解析式为y=x2点D在直线l2:yx上,设点D
27、的坐标为(x,)点D在抛物线C2:y=x2上,x2解得x或x=3点C与点D不重合,点D的坐标为(,)当点C的坐标为(3,3)时,点D的坐标为(,)当点C的坐标为(2t-4,t-2)时,点D的坐标为(2t,t)BDAC,t12ttt的取值范围是t或t4设直线l1与l2交于点M随着点A从左向右运动,从点D与点M重合,到点B与点M重合的过程中,以A,B,C,D为顶点构成的图形不是凸四边形【点睛】本题考查了二次函数综合题,掌握待定系数法求得函数的解析式,点到直线的距离,平行于坐标轴的点的特点,方程思想的运用是解题的关键22、(1);(2)当时,有最大值,最大值为,点坐标为;(3)点的坐标或.【分析】(
28、1)利用点B的坐标,用待定系数法即可求出抛物线的函数表达式;(2)如图1,过点P作轴,交BC于点H,设,H ,求出的面积即可求解;(3)如图2,作ANBC于N,NHx轴于H,作AC的垂直平分线交BC于,交AC于E,利用等腰三角形的性质和三角形外角性质得到,再确定N(3,2),AC的解析式为y5x5,E点坐标为,利用两直线垂直的问题可设直线的解析式为,把E代入求出b,得到直线的解析式为 ,则解方程组 得点的坐标;作点关于N点的对称点,利用对称性得到,设,根据中点坐标公式得到,然后求出x即可得到的坐标,从而得到满足条件的点M的坐标【详解】(1)把代入得;(2)过点P作轴,交BC于点H,设,则点H的
29、坐标为 , , 当时,有最大值,最大值为,此时点坐标为.(3)作ANBC于N,NHx轴于H,作AC的垂直平分线交BC于,交AC于E,ANB为等腰直角三角形,N(3,2),由 可得AC的解析式为y5x5,E点坐标为,设直线的解析式为,把E代入得 ,解得,直线的解析式为,解方程组得 ,则;如图2,在直线BC上作点关于N点的对称点,则,设,综上所述,点M的坐标为或.【点睛】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质、会利用待定系数法求函数解析式,会运用分类讨论的思想解决数学问题23、(1)抛物线与x轴交点坐标为:(2+,0)(2,0)(2)3m1(3)当m=时,S最大=【解析】分析:(1)与x轴相交令y=0,解一元二次方程求解;(2)应用配方法得到顶点A坐标,讨论点A与直线l以及x轴之间位置关系,确定m取值范围(3)在(2)的基础上表示ABO的面积,根据二次函数性质求m详解:(1)当m=2时,抛物线解析式为:y=x2+4x+2令y=0,则x2+4x+2=0解得x1=2+,x2=2抛物线与x轴交点坐标为:(2+,0)(2,0)(2)y=x22mx+m2+2m+2=(xm)2+2m+2抛物线顶点坐标为A(m,2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024农村荒山租赁合同
- 2024山林租赁合同范文
- 2024建设工程勘察合同范本怎样写
- 2024订货购销合同范本范文
- 2024的广播电视服务合同
- 2024正式的产品代理合同样书
- 深圳大学《油画基础》2022-2023学年第一学期期末试卷
- 阿姨照顾小孩合同(2篇)
- 鱼池合同范本(2篇)
- 初一下学期新学期计划范文(7篇)
- 秋日私语(完整精确版)克莱德曼(原版)钢琴双手简谱 钢琴谱
- 办公室室内装修工程技术规范
- 盐酸安全知识培训
- 万盛关于成立医疗设备公司组建方案(参考模板)
- 消防安全巡查记录台帐(共2页)
- 科技特派员工作调研报告
- 中波广播发送系统概述
- 县疾控中心中层干部竞聘上岗实施方案
- 急性心肌梗死精美PPt完整版
- 毕业设计(论文)基于三菱PLC的交通灯模拟控制
- 物业日常巡查记录表.doc
评论
0/150
提交评论