版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、冀教版七年级数学下册第十一章 因式分解专项测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列多项式不能用公式法因式分解的是( )Aa24a4Ba2a1Ca29Da212、下列因式分解正确的是()Aa
2、2+1a(a+1)BCa2+a5(a2)(a+3)+1D3、判断下列不能运用平方差公式因式分解的是()Am2+4Bx2y2Cx2y21D(ma)2(m+a)24、下列多项式中能用平方差公式分解因式的是()Aa2b2Bx2+(y)2C(x)2+(y)2Dm2+15、下列各式中,从左到右的变形是因式分解的是( )ABCD6、把代数式分解因式,正确的结果是( )A-ab(ab+3b)B-ab(ab+3b-1)C-ab(ab-3b+1)D-ab(ab-b-1)7、不论x,y取何实数,代数式x24xy26y13总是( )A非负数B正数C负数D非正数8、如果x2+kx10(x5)(x+2),则k应为()A
3、3B3C7D79、下列各式由左边到右边的变形中,是因式分解的是( )A10 x25x5x(2x1)Bx24x+4x(x4)+4Ca(x+y)ax+ayDx216+3x(x+4)(x4)+3x10、下列各式从左到右的变形属于因式分解的是()A(x+2)(x3)x2x6B6xy2x3yCx2+2x+1x(x+2)+1Dx29(x3)(x+3)第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、观察下列因式分解中的规律:;利用上述系数特点分解因式_2、分解因式:_3、因式分解:_4、分解因式:8a3b+8a2b22ab3_5、分解因式:_三、解答题(5小题,每小题10分,共计50
4、分)1、因式分解(1)n2(m2)n(2m)(2)(a2+4)216a22、我们知道,任意一个正整数c都可以进行这样的分解:c=ab(b是正整数,且ab),在c的所有这些分解中,如果a,b两因数之差的绝对值最小,我们就称ab是c的最优分解并规定:M(c)=,例如9可以分解成19,33,因为9-13-3,所以33是9的最优分解,所以M(9)=1(1)求M(8);M(24);M(c+1)2的值;(2)如果一个两位正整数d(d=10 x+y,x,y都是自然数,且1xy9),交换其个位上的数与十位上的数得到的新数加上原来的两位正整数所得的和为66,那么我们称这个数为“吉祥数”,求所有“吉祥数”中M(d
5、)的最大值3、因式分解(1)(2)4、把下列各式因式分解(1);(2)5、将下列各式分解因式:(1); (2)-参考答案-一、单选题1、C【解析】【分析】直接利用完全平方公式以及平方差公式分别分解因式,进而得出答案【详解】解:A中,故此选项不合题意;B中,故此选项不合题意;C中无法分解因式,故此选项符合题意;D中,故此选项不合题意;故选:C【点睛】本题考查了利用乘法公式进行因式分解解题的关键在于对完全平方公式和平方差公式的灵活运用2、D【解析】【分析】根据因式分解的定义严格判断即可【详解】+1a(a+1)A分解不正确;,不是因式分解,B不符合题意;(a2)(a+3)+1含有加法运算,C不符合题
6、意;,D分解正确;故选D【点睛】本题考查了因式分解,即把一个多项式写成几个因式的积,熟练进行因式分解是解题的关键3、B【解析】【分析】根据平方差公式:进行逐一求解判断即可【详解】解:A、,能用平方差公式分解因式,不符合题意;B、,不能用平方差公式分解因式,符合题意;C、,能用平方差公式分解因式,不符合题意;D、能用平方差公式分解因式,不符合题意;故选B【点睛】本题主要考查了平方差公式分解因式,解题的关键在于能够熟练掌握平方差公式4、D【解析】【分析】根据平方差公式的结构特点,两个平方项,并且符号相反,对各选项分析判断后利用排除法求解【详解】解:A、,有两个平方项,但是符号相同,不能用平方差公式
7、进行分解,不符合题意;B、,有两个平方项,但是符号相同,不能用平方差公式进行分解,不符合题意;C、,有两个平方项,但是符号相同,不能用平方差公式进行分解,不符合题意;D、,可以利用平方差公式进行分解,符合题意;故选:D【点睛】本题考查利用平方差公式因式分解,掌握利用平方差公式因式分解时,多项式需满足的结构特征是解题关键5、C【解析】【分析】根据因式分解的定义判断即可.【详解】解:因式分解即把一个多项式化成几个整式的积的形式.A. ,不是几个整式的积的形式,A选项不是因式分解;B. ,不是几个整式的积的形式,B选项不是因式分解C. ,符合因式分解的定义,C是因式分解. D. ,不是几个整式的积的
8、形式,D选项不是因式分解;故选C【点睛】本题考查了因式分解的定义,把一个多项式化成几个整式的积的形式的变形叫因式分解,等号的左边是一个多项式,右边是几个整式的积,正确理解因式分解的定义是解题的关键.6、B【解析】【分析】根据提公因式法因式分解,先提出,即可求得答案【详解】解:故选B【点睛】本题考查了提公因式法因式分解,掌握提公因式法因式分解是解题的关键7、A【解析】【分析】先把原式化为,结合完全平方公式可得原式可化为从而可得答案.【详解】解:x24xy26y13 故选A【点睛】本题考查的是代数式的值,非负数的性质,利用完全平方公式分解因式,掌握“”是解本题的关键.8、A【解析】【分析】根据多项
9、式乘以多项式把等号右边展开,即可得答案【详解】解:(x-5)(x+2)=x2-3x-10,则k=-3,故选:A【点睛】本题主要考查了因式分解,关键是掌握x2+(p+q)x+pq=(x+p)(x+q)9、A【解析】【详解】因式分解就是把多项式分解成整式的积的形式,依据定义即可判断【分析】解:A、正确;B、结果不是整式的积的形式,故不是因式分解,选项错误;C、结果不是整式的积的形式,故不是因式分解,选项错误;D、结果不是整式的积的形式,故不是因式分解,选项错误故选:A【点睛】本题考查了因式分解的定义,理解因式分解的结过是整式的积的形式是解题的关键10、D【解析】【分析】根据因式分解是把一个多项式化
10、为几个整式的积的形式,可得答案【详解】解:A、是整式的乘法,故此选项不符合题意;B、不属于因式分解,故此选项不符合题意;C、没把一个多项式转化成几个整式积的形式,故此选项不符合题意;D、把一个多项式转化成几个整式积的形式,故此选项符合题意;故选:D【点睛】本题考查了因式分解的定义解题的关键是掌握因式分解的定义,因式分解是把一个多项式化为几个整式的积的形式,注意因式分解与整式乘法的区别二、填空题1、【解析】【分析】利用十字相乘法分解因式即可【详解】解:,故答案为:【点睛】本题考查了十字相乘法因式分解,解题关键是明确二次项系数为1的十字相乘法公式:2、【解析】【分析】用提公因式法即可分解因式【详解
11、】故答案为:【点睛】本题考查了提公因式法分解因式,因式分解的步骤一般是先考虑提公因式,其次考虑公式法另外因式分解要进行到再也不能分解为止3、【解析】【分析】先提公因式,再利用平方差公式即可;【详解】故答案为:【点睛】本题考查提公因式法、公式法分解因式,掌握平方差公式的结构特征是正确应用的前提4、2ab(2ab)2【解析】【分析】先提取公因式-2ab,再对余下的多项式利用完全平方公式继续分解【详解】解:原式2ab(4a24ab+b2)2ab(2ab)2,故答案为:2ab(2ab)2【点睛】本题考查提公因式法,公式法分解因式,解题的关键在于提取公因式后要继续进行二次分解因式5、【解析】【分析】原式
12、提取公因式,再利用平方差公式分解即可【详解】解:原式=,=故答案为:【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键三、解答题1、(1)n(m2)(n+1);(2)(a+2)2(a2)2【解析】【分析】(1)提取公因式,进行因式分解即可;(2)根据平方差公式以及完全平方公式因式分解即可【详解】(1)n2(m2)n(2m)n2(m2)+n(m2)n(m2)(n+1);(2)(a2+4)216a2(a2+4)2(4a)2(a2+4a+4)(a24a+4)(a+2)2(a2)2【点睛】本题考查了因式分解,掌握提公因式法和公式法分解因式是解题的关键,注意分解要彻底2
13、、(1);1;(2);【解析】【分析】(1)根据c=ab中,c的所有这些分解中,如果a,b两因数之差的绝对值最小,就称ab是c的最优分解,因此M(8)=,M(24)=,M(c+1)2= ;(2)设这个两位正整数d交换其个位上的数与十位上的数得到的新数为d,则d+d=(10 x+y)+(10y+x)=11x+11y=11(x+y)=66,由于x,y都是自然数,且1xy9,所以满足条件的“吉祥数”有15、24、33所以M(15)=,M(24)=,M(33)=,所以所有“吉祥数”中M(d)的最大值为【详解】解:(1)由题意得,M(8)=;M(24)=;M(c+1)2=;(2)设这个两位正整数d交换其
14、个位上的数与十位上的数得到的新数为d,则d+d=(10 x+y)+(10y+x)=11x+11y=11(x+y)=66,x,y都是自然数,且1xy9,满足条件的“吉祥数”有15、24、33M(15)=,M(24)=,M(33)=,所有“吉祥数”中M(d)的最大值为【点睛】本题考查了分解因式的应用,根据示例进行分解因式是解题的关键3、(1);(2)【解析】【分析】(1)由题意提取公因式ab,进而利用平方差公式进行因式分解;(2)根据题意先利用平方差公式进行运算,进而利用完全平方公式进行因式分解.【详解】解:(1)原式(2)原式【点睛】本题考查分解因式,熟练掌握利用提取公因式法和公式法进行因式分解是解题的关键.4、 (1)(2)【解析】【分析】(1)先提公因式,再应用平方差公式;(2)先提公因式,再应用完全平方公式(1)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 临床氨甲苯酸、氨基己酸、氨甲环酸等止血药适应症、用法、不良反应、禁忌症等区别及药理作用
- 2024果树采购合同
- 2025高考生物备考说课稿:免疫失调与免疫学的应用说课稿
- 2024融资合同范本:新能源汽车产业专项协议3篇
- 专属2024学校系列校服订购协议
- 2024液化气运输合同能源消耗与减排责任规范文本3篇
- 专业咨询顾问合作合同(2024年度版)版
- 福建省南平市松溪县郑墩中学高二语文月考试题含解析
- 12坐井观天(说课稿)2024-2025学年统编版语文二年级上册
- 1-1《子路、曾皙、冉有、公西华侍坐》说课稿-2024-2025学年高一语文下学期同步说课稿(统编版必修下册)
- 北师大版七年级数学寒假班讲义(基础班)
- 2025年驾照C1证考试科目一必考题库770题及答案
- 2024-2025学年北师版八年级物理上册期末考试综合测试卷
- 全国城市雕塑行业设计收费标准
- 质量管理组织机构及职责
- 园区保安队长的工作职责
- 中文论文标准格式及说明
- 宁波市彩叶树种园林应用调查研究
- 国家电网公司电力客户档案管理规定
- iso10110系列标准
- 万能中国地图模板(可修改)
评论
0/150
提交评论