甘肃省靖远县四中2023学年高三第二次模拟考试数学试卷(含解析)_第1页
甘肃省靖远县四中2023学年高三第二次模拟考试数学试卷(含解析)_第2页
甘肃省靖远县四中2023学年高三第二次模拟考试数学试卷(含解析)_第3页
甘肃省靖远县四中2023学年高三第二次模拟考试数学试卷(含解析)_第4页
甘肃省靖远县四中2023学年高三第二次模拟考试数学试卷(含解析)_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2023学年高考数学模拟测试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并

2、交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知集合,集合,若,则( )ABCD2设,为两个平面,则的充要条件是A内有无数条直线与平行B内有两条相交直线与平行C,平行于同一条直线D,垂直于同一平面3已知为虚数单位,复数满足,则复数在复平面内对应的点在( )A第一象限B第二象限C第三象限D第四象限4设集合,若,则的取值范围是( )ABCD5已知抛物线的焦点为,是抛物线上两个不同的点,若,则线段的中点到轴的距离为( )A5B3CD26已知复数满足,其中为虚数单位,则( )ABCD7体育教师指导4个学生训练转身动作,预备时,4个学生全

3、部面朝正南方向站成一排.训练时,每次都让3个学生“向后转”,若4个学生全部转到面朝正北方向,则至少需要“向后转”的次数是( )A3B4C5D68已知双曲线C:=1(a0,b0)的右焦点为F,过原点O作斜率为的直线交C的右支于点A,若|OA|=|OF|,则双曲线的离心率为( )ABC2D+19已知是边长为的正三角形,若,则ABCD10已知六棱锥各顶点都在同一个球(记为球)的球面上,且底面为正六边形,顶点在底面上的射影是正六边形的中心,若,则球的表面积为( )ABCD11为得到y=sin(2x-A向左平移3个单位 B向左平移C向右平移3个单位 D向右平移12已知函数,若总有恒成立.记的最小值为,则

4、的最大值为( )A1BCD二、填空题:本题共4小题,每小题5分,共20分。13在中,、的坐标分别为,且满足,为坐标原点,若点的坐标为,则的取值范围为_.14已知正数a,b满足a+b=1,则的最小值等于_ ,此时a=_.15已知非零向量,满足,且,则与的夹角为_.16曲线ye5x2在点(0,3)处的切线方程为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)椭圆:的离心率为,点 为椭圆上的一点.(1)求椭圆的标准方程;(2)若斜率为的直线过点,且与椭圆交于两点,为椭圆的下顶点,求证:对于任意的实数,直线的斜率之积为定值.18(12分)已知函数有两个零点.(1)求的取值

5、范围;(2)是否存在实数, 对于符合题意的任意,当 时均有?若存在,求出所有的值;若不存在,请说明理由19(12分)改革开放40年,我国经济取得飞速发展,城市汽车保有量在不断增加,人们的交通安全意识也需要不断加强.为了解某城市不同性别驾驶员的交通安全意识,某小组利用假期进行一次全市驾驶员交通安全意识调查.随机抽取男女驾驶员各50人,进行问卷测评,所得分数的频率分布直方图如图所示.规定得分在80分以上为交通安全意识强.安全意识强安全意识不强合计男性女性合计()求的值,并估计该城市驾驶员交通安全意识强的概率;()已知交通安全意识强的样本中男女比例为4:1,完成22列联表,并判断有多大把握认为交通安

6、全意识与性别有关;()在()的条件下,从交通安全意识强的驾驶员中随机抽取2人,求抽到的女性人数的分布列及期望.附:,其中0.0100.0050.0016.6357.87910.82820(12分)在数列中,已知,且,.(1)求数列的通项公式;(2)设,数列的前项和为,证明:.21(12分)已知数列,其前项和为,满足,其中,.若,(),求证:数列是等比数列;若数列是等比数列,求,的值;若,且,求证:数列是等差数列.22(10分)已知椭圆的离心率为是椭圆的一个焦点,点,直线的斜率为1(1)求椭圆的方程;(1)若过点的直线与椭圆交于两点,线段的中点为,是否存在直线使得?若存在,求出的方程;若不存在,

7、请说明理由2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【答案解析】根据或,验证交集后求得的值.【题目详解】因为,所以或.当时,不符合题意,当时,.故选A.【答案点睛】本小题主要考查集合的交集概念及运算,属于基础题.2、B【答案解析】本题考查了空间两个平面的判定与性质及充要条件,渗透直观想象、逻辑推理素养,利用面面平行的判定定理与性质定理即可作出判断【题目详解】由面面平行的判定定理知:内两条相交直线都与平行是的充分条件,由面面平行性质定理知,若,则内任意一条直线都与平行,所以内两条相交直线

8、都与平行是的必要条件,故选B【答案点睛】面面平行的判定问题要紧扣面面平行判定定理,最容易犯的错误为定理记不住,凭主观臆断,如:“若,则”此类的错误3、B【答案解析】求出复数,得出其对应点的坐标,确定所在象限【题目详解】由题意,对应点坐标为 ,在第二象限故选:B【答案点睛】本题考查复数的几何意义,考查复数的除法运算,属于基础题4、C【答案解析】由得出,利用集合的包含关系可得出实数的取值范围.【题目详解】,且,.因此,实数的取值范围是.故选:C.【答案点睛】本题考查利用集合的包含关系求参数,考查计算能力,属于基础题.5、D【答案解析】由抛物线方程可得焦点坐标及准线方程,由抛物线的定义可知,继而可求

9、出,从而可求出的中点的横坐标,即为中点到轴的距离.【题目详解】解:由抛物线方程可知,即,.设 则,即,所以.所以线段的中点到轴的距离为.故选:D.【答案点睛】本题考查了抛物线的定义,考查了抛物线的方程.本题的关键是由抛物线的定义求得两点横坐标的和.6、A【答案解析】先化简求出,即可求得答案.【题目详解】因为,所以所以故选:A【答案点睛】此题考查复数的基本运算,注意计算的准确度,属于简单题目.7、B【答案解析】通过列举法,列举出同学的朝向,然后即可求出需要向后转的次数.【题目详解】“正面朝南”“正面朝北”分别用“”“”表示,利用列举法,可得下表,原始状态第1次“向后转”第2次“向后转”第3次“向

10、后转”第4次“向后转”可知需要的次数为4次.故选:B.【答案点睛】本题考查的是求最小推理次数,一般这类题型构造较为巧妙,可通过列举的方法直观感受,属于基础题.8、B【答案解析】以为圆心,以为半径的圆的方程为,联立,可求出点,则,整理计算可得离心率.【题目详解】解:以为圆心,以为半径的圆的方程为,联立,取第一象限的解得,即,则,整理得,则(舍去),.故选:B.【答案点睛】本题考查双曲线离心率的求解,考查学生的计算能力,是中档题.9、A【答案解析】由可得,因为是边长为的正三角形,所以,故选A10、D【答案解析】由题意,得出六棱锥为正六棱锥,求得,再结合球的性质,求得球的半径,利用表面积公式,即可求

11、解.【题目详解】由题意,六棱锥底面为正六边形,顶点在底面上的射影是正六边形的中心,可得此六棱锥为正六棱锥,又由,所以, 在直角中,因为,所以,设外接球的半径为,在中,可得,即,解得,所以外接球的表面积为.故选:D.【答案点睛】本题主要考查了正棱锥的几何结构特征,以及外接球的表面积的计算,其中解答中熟记几何体的结构特征,熟练应用球的性质求得球的半径是解答的关键,着重考查了空间想象能力,以及推理与计算能力,属于中档试题.11、D【答案解析】试题分析:因为,所以为得到y=sin(2x-3)的图象,只需要将考点:三角函数的图像变换12、C【答案解析】根据总有恒成立可构造函数,求导后分情况讨论的最大值可

12、得最大值最大值,即.根据题意化简可得,求得,再换元求导分析最大值即可.【题目详解】由题, 总有即恒成立.设,则的最大值小于等于0.又,若则,在上单调递增, 无最大值.若,则当时,在上单调递减, 当时,在上单调递增.故在处取得最大值.故,化简得.故,令,可令,故,当时, ,在递减;当时, ,在递增.故在处取得极大值,为.故的最大值为.故选:C【答案点睛】本题主要考查了根据导数求解函数的最值问题,需要根据题意分析导数中参数的范围,再分析函数的最值,进而求导构造函数求解的最大值.属于难题.二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】由正弦定理可得点在曲线上,设,则,将代入可得,

13、利用二次函数的性质可得范围.【题目详解】解:由正弦定理得,则点在曲线上,设,则,又,因为,则,即的取值范围为.故答案为:.【答案点睛】本题考查双曲线的定义,考查向量数量积的坐标运算,考查学生计算能力,有一定的综合性,但难度不大.14、3 【答案解析】根据题意,分析可得,由基本不等式的性质可得最小值,进而分析基本不等式成立的条件可得a的值,即可得答案【题目详解】根据题意,正数a、b满足,则,当且仅当时,等号成立,故的最小值为3,此时.故答案为:3;.【答案点睛】本题考查基本不等式及其应用,考查转化与化归能力,属于基础题.15、(或写成)【答案解析】设与的夹角为,通过,可得,化简整理可求出,从而得

14、到答案.【题目详解】设与的夹角为可得,故,将代入可得得到,于是与的夹角为.故答案为:.【答案点睛】本题主要考查向量的数量积运算,向量垂直转化为数量积为0是解决本题的关键,意在考查学生的转化能力,分析能力及计算能力.16、.【答案解析】先利用导数求切线的斜率,再写出切线方程.【题目详解】因为y5e5x,所以切线的斜率k5e05,所以切线方程是:y35(x0),即y5x3.故答案为y5x3.【答案点睛】(1)本题主要考查导数的几何意义和函数的求导,意在考查学生对这些知识的掌握水平和分析推理能力.(2) 函数在点处的导数是曲线在处的切线的斜率,相应的切线方程是三、解答题:共70分。解答应写出文字说明

15、、证明过程或演算步骤。17、(1);(2)证明见解析【答案解析】(1)运用离心率公式和点满足椭圆方程,解得,进而得到椭圆方程;(2)设直线,代入椭圆方程,运用韦达定理和直线的斜率公式,以及点在直线上满足直线方程,化简整理,即可得到定值【题目详解】(1)因为,所以, 又椭圆过点, 所以 由,解得所以椭圆的标准方程为 .(2)证明 设直线:, 联立得, 设,则 易知故所以对于任意的,直线的斜率之积为定值.【答案点睛】本题考查椭圆的方程的求法,注意运用离心率公式和点满足椭圆方程,考查直线方程和椭圆方程联立,运用韦达定理和直线的斜率公式,化简整理,考查运算能力,属于中档题18、 (1);(2).【答案

16、解析】(1)对求导,对参数进行分类讨论,根据函数单调性即可求得.(2)先根据,得,再根据零点解得,转化不等式得,令,化简得,因此 ,最后根据导数研究对应函数单调性,确定对应函数最值,即得取值集合.【题目详解】(1),当时,对恒成立,与题意不符,当,时,即函数在单调递增,在单调递减,和时均有,解得:,综上可知:的取值范围;(2)由(1)可知,则,由的任意性及知,且,故,又,令,则,且恒成立,令,而,时,时,令,若,则时,即函数在单调递减,与不符;若,则时,即函数在单调递减,与式不符;若,解得,此时恒成立,即函数在单调递增,又,时,;时,符合式,综上,存在唯一实数符合题意.【答案点睛】利用导数研究

17、不等式恒成立或存在型问题,首先要构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造函数,直接把问题转化为函数的最值问题.19、().0.2()见解析,有的把握认为交通安全意识与性别有关()见解析,【答案解析】()直接根据频率和为1计算得到答案.()完善列联表,计算,对比临界值表得到答案.()的取值为,计算概率得到分布列,计算数学期望得到答案.【题目详解】() ,解得.所以该城市驾驶员交通安全意识强的概率.()安全意识强安全意识不强合计男性163450女性44650合计2080100,所以有的把握认为交通安全意识与性别有关()的取值

18、为 所以的分布列为期望.【答案点睛】本题考查了独立性检验,分布列,数学期望,意在考查学生的计算能力和综合应用能力.20、(1);(2)见解析.【答案解析】(1)由已知变形得到,从而是等差数列,然后利用等差数列的通项公式计算即可;(2)先求出数列的通项,再利用裂项相消法求出即可.【题目详解】(1)由已知,即,又,则数列是以1为首项3 为公差的等差数列,所以,即.(2)因为,则,所以,又是递增数列,所以,综上,.【答案点睛】本题考查由递推公式求数列通项公式、裂项相消法求数列的和,考查学生的计算能力,是一道基础题.21、(1)见解析(2)(3)见解析【答案解析】试题分析:(1)(), 所以,故数列是等比数列;(2)利用特殊值法,得,故;(3)得,所以,得,可证数列是等差数列.试题解析:(1)证明:若,则当(),所以,即,所以, 又由,得,即,所以,故数列是等比数列 (2)若是等比数列,设其公比为( ),当时,即,得, 当时,即,得,当时,即,得,得 , ,得 , 解得代入式,得 此时(),所以,是公比为的等比数列,故 (3)证明:若,由,得,又,解得由, ,代入得,所以,成等差数列,由,得,两式相减得:即所

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论