版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高二下数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知函数,设,则ABCD2若函数存在增区间,则实数的取值范围为( )ABCD3函数在闭区间上有最大值3,最小值为
2、2, 的取值范围是ABCD4x-2xn的展开式中的第7A16B18C20D225已知是定义在上的奇函数,且,若,则()A-3B0C3D20196与圆及圆都外切的圆的圆心在( )A一个圆上B一个椭圆上C双曲线的一支上D抛物线上7已知函数是定义在上的奇函数,且以2为周期,当时,则的值为()ABCD8已知复数满足(为虚数单位),其中是的共轭复数,则复数的虚部为( )ABCD9甲、乙两人进行三打二胜制乒乓球赛,已知每局甲取胜的概率为0.6,乙取胜的概率为0.4,那么最终甲胜乙的概率为A0.36B0.216C0.432D0.64810若函数的图像如下图所示,则函数的图像有可能是()ABCD11已知双曲线
3、与双曲线,给出下列说法,其中错误的是( )A它们的焦距相等B它们的焦点在同一个圆上C它们的渐近线方程相同D它们的离心率相等12若某程序框图如图所示,则该程序运行后输出的值是( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13复数(为虚数单位)的共轭复数为,则_14用五种不同的颜色给图中、六个区域涂色,要求有公共边的区域不能涂同一种颜色且颜色齐全,则共有涂色方法_种15在的展开式中常数项为30,则实数的值是_16记(为正奇数),则除以88的余数为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任
4、务的两种新的生产方式为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图:(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;(2)求40名工人完成生产任务所需时间的中位数,并将完成生产任务所需时间超过和不超过的工人数填入下面的列联表:超过不超过第一种生产方式第二种生产方式(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?附:, 18(12分)选修4-4:坐标系与参数方程在直角坐标系中,已知点,直线(为参数),以坐标原点为极点,
5、以轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程是.(1)求曲线的直角坐标方程;(2)若直线与曲线的交点为,求的值.19(12分)若一圆锥的底面半径为4,体积是.(1)求该圆锥的母线长;(2)已知该圆锥的顶点为,并且、为圆锥的两个母线,求线段长度为何值时,的面积取得最大值?20(12分)在心理学研究中,常采用对比试验的方法评价不同心理暗示对人的影响,具体方法如下:将参加试验的志愿者随机分成两组,一组接受甲种心理暗示,另一组接受乙种心理暗示,通过对比这两组志愿者接受心理暗示后的结果来评价两种心理暗示的作用,现有6名男志愿者A1,A2,A3,A4,A5,A6和4名女志愿者B1,B2,B3,B4,
6、从中随机抽取5人接受甲种心理暗示,另5人接受乙种心理暗示.(I)求接受甲种心理暗示的志愿者中包含A1但不包含的频率。(II)用X表示接受乙种心理暗示的女志愿者人数,求X的分布列与数学期望EX.21(12分)已知 (1)当时,求不等式的解集;(2)若时,求的取值范围.22(10分)已知函数的定义域为;(1)求实数的取值范围;(2)设实数为的最大值,若实数,满足,求的最小值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】对函数求导,得出函数在上单调递减,利用中间值法比较、的大小关系,利用函数的单调性得出、三个数的大小关系
7、【详解】,所以,函数在上单调递减,即,则,函数在上单调递减,因此,故选D.【点睛】本题考查函数值的大小比较,这类问题需要结合函数的单调性以及自变量的大小,其中单调性可以利用导数来考查,本题中自变量的结构不相同,可以利用中间值法来比较,考查推理能力,属于中等题2、C【解析】先假设函数不存在增区间,则单调递减,利用的导数恒小于零列不等式,将不等式分离常数后,利用配方法求得常数的取值范围,再取这个取值范围的补集,求得题目所求实数的取值范围.【详解】若函数不存在增区间,则函数单调递减,此时在区间恒成立,可得,则,可得,故函数存在增区间时实数的取值范围为故选C.【点睛】本小题主要考查利用导数研究函数的单
8、调性,考查不等式恒成立问题的求解策略,属于中档题.3、C【解析】本题利用数形结合法解决,作出函数的图象,如图所示,当时,最小,最小值是2,当时,欲使函数在闭区间,上的上有最大值3,最小值2,则实数的取值范围要大于等于1而小于等于2即可【详解】解:作出函数的图象,如图所示,当时,最小,最小值是2,当时,函数在闭区间,上上有最大值3,最小值2,则实数的取值范围是,故选:【点睛】本题考查二次函数的值域问题,其中要特别注意它的对称性及图象的应用,属于中档题4、B【解析】利用通项公式即可得出【详解】x-2xn的展开式的第7项令n2-9=0 0,解得n故选:B【点睛】本题考查了二项式定理的应用、方程思想,
9、考查了推理能力与计算能力,属于中档题5、B【解析】根据题意,由函数的奇偶性分析可得,函数是周期为4的周期函数,据此求出、的值,进而结合周期性分析可得答案.【详解】解:根据题意,是定义在上的奇函数,则,又由,则有,即,变形可得:,即函数是周期为4的周期函数,是定义在上的奇函数,则,又由,则,故.故选:B.【点睛】本题考查函数的奇偶性周期性的综合应用,涉及函数值的计算,属于基础题.6、C【解析】设动圆的半径为,然后根据动圆与圆及圆都外切得,再两式相减消去参数,则满足双曲线的定义,即可求解.【详解】设动圆的圆心为,半径为,而圆的圆心为,半径为1;圆的圆心为,半径为1依题意得,则,所以点的轨迹是双曲线
10、的一支故选C【点睛】本题主要考查了圆与圆的位置关系,以及双曲线的定义的应用,其中解答中熟记圆与圆的位置关系和双曲线的定义是解答的关键,着重考查了推理与运算能力,属于基础题.7、A【解析】根据题意可得:,代入中计算即可得到答案。【详解】由于;因为函数是定义在上的奇函数,且以2为周期;所以又因为,所以;故答案选A【点睛】本题主要考查函数的有关性质,奇偶性、周期性,以及对数的有关运算,属于基础题。8、A【解析】分析:设,利用的共轭复数是,列出方程组求a、b的值即可.详解:设,的共轭复数是,又,又,.故选:A.点睛:本题主要考查了复数的共轭复数与代数运算的应用问题.9、D【解析】分析:由题意,要使得甲
11、胜乙,则包含着甲胜前两局或甲胜第一、三局或甲胜二、三局三种情况,根据互斥时间的概率和相互独立了的计算的公式,即可求解答案.详解:由题意,每局中甲取胜的概率为,乙取胜的概率为,则使得甲胜乙,则包含着甲胜前两局或甲胜第一、三局或甲胜二、三局三种情况,根据互斥时间的概率和相互独立了的计算的公式得:,故选D.点睛:本题主要考查了相互独立事件同时发生的概率和互斥事件的概率的计算,其中根据题意得出甲取胜的三种情况是解答本题的关键,着重考查了分析问题和解答问题的能力.10、A【解析】根据函数图象的增减性与其导函数的正负之间的关系求解。【详解】由 的图象可知:在 ,单调递减,所以当时, 在 ,单调递增,所以当
12、时, 故选A.【点睛】本题考查函数图象的增减性与其导函数的正负之间的关系,属于基础题.11、D【解析】根据题意,由两个双曲线的方程计算出两个双曲线的焦点坐标,焦距,渐近线方程以及离心率,进而分析选项即可得到答案。【详解】根据题意,双曲线,其中,则,则焦距,焦点坐标,渐近线方程为,离心率;双曲线,其标准方程为,其中,则,则焦距,焦点坐标,渐近线为,离心率;据此依次分析选项:两个双曲线的焦距均为,故A正确;双曲线的焦点坐标,双曲线的焦点坐标,都在圆上,故B正确;渐近线方程均为,故C正确;双曲线的离心率,双曲线的离心率,离心率不相等,故选D【点睛】本题考查双曲线的基本性质,解题时要注意将双曲线的方程
13、变为标准形式,属于基础题。12、C【解析】运行程序,当时退出程序,输出的值.【详解】运行程序,判断否,判断否,以此类推,判断是,退出循环,输出,故选C.【点睛】本小题主要考查计算循环结构程序框图输出的结果,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、2【解析】根据直接求解即可.【详解】本题正确结果:【点睛】本题考查复数模的求解,属于基础题.14、960【解析】分析:先分析出同色区域的情况,然后其他颜色任意排即可.详解:同色的区域可以为AC,AE,AF,BD,BF,CD,CE,DF,共8种,故共有涂色方法8种.故答案为960.点睛:考查排列组合的简单应用,认真审题,分析清楚
14、情况是解题关键,属于中档题.15、2;【解析】利用二项展开式的通项,当的次幂为时,求得,再由展开式中常数项为30,得到关于的方程.【详解】因为,当时,解得:.【点睛】本题考查二项式定理中的展开式,考查基本运算求解能力,运算过程中要特别注意符号的正负问题.16、87【解析】由组合数的性质知:,由此能求出结果.【详解】解:由组合数的性质知:则除以88的余数为.故答案为:.【点睛】本题考查余数的求法,是中档题,解题时要认真审题,注意组合数性质及二项式定理的合理运用.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)第二种生产方式的效率更高. 理由见解析(2)80(3)能【解析
15、】分析:(1)计算两种生产方式的平均时间即可(2)计算出中位数,再由茎叶图数据完成列联表(3)由公式计算出,再与6.635比较可得结果详解:(1)第二种生产方式的效率更高.理由如下:(i)由茎叶图可知:用第一种生产方式的工人中,有75%的工人完成生产任务所需时间至少80分钟,用第二种生产方式的工人中,有75%的工人完成生产任务所需时间至多79分钟.因此第二种生产方式的效率更高.(ii)由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间的中位数为85.5分钟,用第二种生产方式的工人完成生产任务所需时间的中位数为73.5分钟.因此第二种生产方式的效率更高.(iii)由茎叶图可知:用第一种生产
16、方式的工人完成生产任务平均所需时间高于80分钟;用第二种生产方式的工人完成生产任务平均所需时间低于80分钟,因此第二种生产方式的效率更高.(iv)由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间分布在茎8上的最多,关于茎8大致呈对称分布;用第二种生产方式的工人完成生产任务所需时间分布在茎7上的最多,关于茎7大致呈对称分布,又用两种生产方式的工人完成生产任务所需时间分布的区间相同,故可以认为用第二种生产方式完成生产任务所需的时间比用第一种生产方式完成生产任务所需的时间更少,因此第二种生产方式的效率更高.以上给出了4种理由,考生答出其中任意一种或其他合理理由均可得分.(2)由茎叶图知.列联
17、表如下:超过不超过第一种生产方式155第二种生产方式515(3)由于,所以有99%的把握认为两种生产方式的效率有差异.点睛:本题主要考查了茎叶图和独立性检验,考察学生的计算能力和分析问题的能力,贴近生活18、(1);(2).【解析】分析:(1)直接代极坐标公式得到曲线的直角坐标方程.(2) 把直线的参数方程代入,得,再利用直线参数方程t的几何意义解答.详解:(1)对于曲线,两边同乘以可得,即,所以它的直角坐标方程为.(2)把直线的参数方程代入,得,所以,因为点在直线上,所以,因为,所以,所以.点睛:(1)本题主要考查极坐标和直角坐标的互化,考查直线参数方程t的几何意义,意在考查学生对这些知识的
18、掌握水平和基本运算能力.(2) 过定点、倾斜角为的直线的参数方程(为参数).当动点在定点上方时,. 当动点在定点下方时,.19、(1)5;(2).【解析】(1)先根据体积求高,再根据母线与高的关系求结果;(2)先确定的面积最大值何时取得,再根据勾股定理求长度.【详解】(1)因为圆锥的底面半径为4,体积是,所以因此母线长为;(2)的面积因为,所以当时,的面积取最大值,此时【点睛】本题考查圆锥的体积以及截面积,考查基本分析求解能力,属基础题.20、(1) (2)见解析【解析】(I)记接受甲种心理暗示的志愿者中包含但不包含的事件为M,计算即得(II)由题意知X可取的值为:.利用超几何分布概率计算公式得X的分布列为X01234P进一步计算X的数学期望.试题解析:(I)记接受甲种心理暗示的志愿者中包含但不包含的事件为M,则(II)由题意知X可取的值为:.则因此X的分布列为X01234PX的数学期望是=【名师点睛】本题主要考查古典概型的概率公式和超几何分布概率计算公式、随机变量的分布列和数学期望.解答本题,首先要准确确定所研究对象的基本事件空间、基本事件个数,利用超几何分布的概率公式.本题属中等难度的题目,计算
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度绿色建筑评价标准制定合同gf02093篇
- 2025年度农产品出口加工合同范本4篇
- 2025年度新能源充电桩设备质押典当租赁合同4篇
- 2024版桶装水合同
- 二零二五版门卫人员劳动合同及安全文化推广协议4篇
- 2025年度海洋资源勘探开发工程承包合同4篇
- 2025年度出租车行业信息化建设承包合同4篇
- 2024版商品混凝土供应与购买合同在线定制
- 二零二五年度汽车空调系统保养与节能改造合同4篇
- 专业美甲店员2024聘用协议文档模板版B版
- 高考对联题(对联知识、高考真题及答案、对应练习题)
- 新版《铁道概论》考试复习试题库(含答案)
- 【律师承办案件费用清单】(计时收费)模板
- 高中物理竞赛真题分类汇编 4 光学 (学生版+解析版50题)
- Unit1FestivalsandCelebrations词汇清单高中英语人教版
- 西方经济学-高鸿业-笔记
- 2024年上海市中考语文试题卷(含答案)
- 幼儿园美术教育研究策略国内外
- 生猪养殖生产过程信息化与数字化管理
- (完整)六年级数学上册寒假每天10道计算题5道应用题
- (2024年)版ISO9001质量管理体系培训教材
评论
0/150
提交评论